|
[1] M. Armand, J.-M. Tarascon, Building better batteries, nature, 451 (2008) 652-657. [2] J. Liu, J. Wang, C. Xu, H. Jiang, C. Li, L. Zhang, J. Lin, Z.X. Shen, Advanced energy storage devices: basic principles, analytical methods, and rational materials design, Advanced science, 5 (2018) 1700322. [3] H. Yang, H. Li, J. Li, Z. Sun, K. He, H.M. Cheng, F. Li, The rechargeable aluminum battery: opportunities and challenges, Angewandte Chemie International Edition, 58 (2019) 11978-11996. [4] G.A. Elia, K. Marquardt, K. Hoeppner, S. Fantini, R. Lin, E. Knipping, W. Peters, J.F. Drillet, S. Passerini, R. Hahn, An overview and future perspectives of aluminum batteries, Advanced Materials, 28 (2016) 7564-7579. [5] M.C. Lin, M. Gong, B. Lu, Y. Wu, D.Y. Wang, M. Guan, M. Angell, C. Chen, J. Yang, B.J. Hwang, An ultrafast rechargeable aluminium-ion battery, Nature, 520 (2015) 324-328. [6] H. Chen, H. Xu, B. Zheng, S. Wang, T. Huang, F. Guo, W. Gao, C. Gao, Oxide film efficiently suppresses dendrite growth in aluminum-ion battery, ACS applied materials & interfaces, 9 (2017) 22628-22634. [7] S. Jiao, H. Lei, J. Tu, J. Zhu, J. Wang, X. Mao, An industrialized prototype of the rechargeable Al/AlCl3-[EMIm] Cl/graphite battery and recycling of the graphitic cathode into graphene, Carbon, 109 (2016) 276-281. [8] D.Y. Wang, C.Y. Wei, M.C. Lin, C.J. Pan, H.L. Chou, H.A. Chen, M. Gong, Y. Wu, C. Yuan, M. Angell, Advanced rechargeable aluminium ion battery with a high-quality natural graphite cathode, Nature communications, 8 (2017) 1-7. [9] A.S. Childress, P. Parajuli, J. Zhu, R. Podila, A.M. Rao, A Raman spectroscopic study of graphene cathodes in high-performance aluminum ion batteries, Nano Energy, 39 (2017) 69-76. [10] P. Bhauriyal, A. Mahata, B. Pathak, The staging mechanism of AlCl4 intercalation in a graphite electrode for an aluminium-ion battery, Physical Chemistry Chemical Physics, 19 (2017) 7980-7989. [11] C.J. Pan, C. Yuan, G. Zhu, Q. Zhang, C.J. Huang, M.C. Lin, M. Angell, B.J. Hwang, P. Kaghazchi, H. Dai, An operando X-ray diffraction study of chloroaluminate anion-graphite intercalation in aluminum batteries, Proceedings of the National Academy of Sciences, 115 (2018) 5670-5675. [12] X. Dong, H. Xu, H. Chen, L. Wang, J. Wang, W. Fang, C. Chen, M. Salman, Z. Xu, C. Gao, Commercial expanded graphite as high-performance cathode for low-cost aluminum-ion battery, Carbon, 148 (2019) 134-140. [13] C. Li, P.C. Rath, S.X. Lu, J. Patra, C.Y. Su, D. Bresser, S. Passerini, J.K. Chang, Ordered nano-structured mesoporous CMK-8 and other carbonaceous positive electrodes for rechargeable aluminum batteries, Chemical Engineering Journal, 417 (2021) 129131. [14] H. Huang, F. Zhou, P. Lu, X. Li, P. Das, X. Feng, K. Müllen, Z.-S. Wu, Design and construction of few-layer graphene cathode for ultrafast and high-capacity aluminum-ion batteries, Energy Storage Materials, 27 (2020) 396-404. [15] S.C. Jung, Y.J. Kang, D.J. Yoo, J.W. Choi, Y.K. Han, Flexible few-layered graphene for the ultrafast rechargeable aluminum-ion battery, The Journal of Physical Chemistry C, 120 (2016) 13384-13389. [16] J.J.H. Togonon, P.C. Chiang, H.J. Lin, W.C. Tsai, H.J. Yen, Pure Carbon-based Electrodes for Metal-ion Batteries, Carbon Trends, (2021) 100035. [17] J.C. Chacón‐Torres, L. Wirtz, T. Pichler, Raman spectroscopy of graphite intercalation compounds: Charge transfer, strain, and electron–phonon coupling in graphene layers, physica status solidi (b), 251 (2014) 2337-2355. [18] H. Xu, T. Bai, H. Chen, F. Guo, J. Xi, T. Huang, S. Cai, X. Chu, J. Ling, W. Gao, Low-cost AlCl3/Et3NHCl electrolyte for high-performance aluminum-ion battery, Energy Storage Materials, 17 (2019) 38-45. [19] H. Jiao, J. Wang, J. Tu, H. Lei, S. Jiao, Aluminum‐Ion Asymmetric Supercapacitor Incorporating Carbon Nanotubes and an Ionic Liquid Electrolyte: Al/AlCl3‐[EMIm] Cl/CNTs, Energy Technology, 4 (2016) 1112-1118. [20] J. Wang, J. Polleux, J. Lim, B. Dunn, Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles, The Journal of Physical Chemistry C, 111 (2007) 14925-14931. [21] M. Wu, B. Xu, L. Chen, C. Ouyang, Geometry and fast diffusion of AlCl4 cluster intercalated in graphite, Electrochimica Acta, 195 (2016) 158-165. [22] K. Jurkiewicz, M. Pawlyta, A. Burian, Structure of Carbon Materials Explored by Local Transmission Electron Microscopy and Global Powder Diffraction Probes, C, 4 (2018) 68. [23] D.Y. Wang, C.Y. Wei, M.C. Lin, C.J. Pan, H.L. Chou, H.A. Chen, M. Gong, Y. Wu, C. Yuan, M. Angell, Y.J. Hsieh, Y.H. Chen, C.Y. Wen, C.W. Chen, B.J. Hwang, C.C. Chen, H. Dai, Advanced rechargeable aluminium ion battery with a high-quality natural graphite cathode, Nature Communications, 8 (2017) 14283. [24] L. Bokobza, J.L. Bruneel, M. Couzi, Raman spectroscopy as a tool for the analysis of carbon-based materials (highly oriented pyrolitic graphite, multilayer graphene and multiwall carbon nanotubes) and of some of their elastomeric composites, Vibrational Spectroscopy, 74 (2014) 57-63. [25] K.Y. Foo, B.H. Hameed, Insights into the modeling of adsorption isotherm systems, Chemical engineering journal, 156 (2010) 2-10. [26] S. Inoue, H. Tanaka, Y. Hanzawa, S. Inagaki, Y. Fukushima, G. Büchel, K. Unger, A. Matsumoto, K. Kaneko, Relationship between intrinsic pore-wall corrugation and adsorption hysteresis of N2, O2, and Ar on regular mesopores, Studies in Surface Science and Catalysis, Elsevier, 2000, pp. 167-176. [27] H. Sun, G. Zhu, X. Xu, M. Liao, Y.Y. Li, M. Angell, M. Gu, Y. Zhu, W.H. Hung, J. Li, Y. Kuang, Y. Meng, M.-C. Lin, H. Peng, H. Dai, A safe and non-flammable sodium metal battery based on an ionic liquid electrolyte, Nature Communications, 10 (2019) 3302. [28] G. Zhu, M. Angell, C.J. Pan, M.C. Lin, H. Chen, C.J. Huang, J. Lin, A.J. Achazi, P. Kaghazchi, B.J. Hwang, H. Dai, Rechargeable aluminum batteries: effects of cations in ionic liquid electrolytes, RSC Advances, 9 (2019) 11322-11330. [29] M. Angell, C.J. Pan, Y. Rong, C. Yuan, M.C. Lin, B.J. Hwang, H. Dai, High Coulombic efficiency aluminum-ion battery using an AlCl3-urea ionic liquid analog electrolyte, Proceedings of the National Academy of Sciences, 114 (2017) 834-839. [30] M.C. Lin, M. Gong, B. Lu, Y. Wu, D.Y. Wang, M. Guan, M. Angell, C. Chen, J. Yang, B.J. Hwang, H. Dai, An ultrafast rechargeable aluminium-ion battery, Nature, 520 (2015) 324. [31] X. Fan, R.R. Gaddam, N.A. Kumar, X.S. Zhao, A hybrid Mg2+/Li+ battery based on interlayer‐expanded MoS2/graphene cathode, Advanced Energy Materials, 7 (2017) 1700317. [32] Z. Li, B. Niu, J. Liu, J. Li, F. Kang, Rechargeable aluminum-ion battery based on MoS2 microsphere cathode, ACS applied materials & interfaces, 10 (2018) 9451-9459. [33] P. Simon, Y. Gogotsi, B. Dunn, Where do batteries end and supercapacitors begin?, Science, 343 (2014) 1210-1211. [34] J. Tu, M. Kou, M. Wang, S. Jiao, Electrochemical behavior of NiCl2/Ni in acidic AlCl3-based ionic liquid electrolyte, Inorganic Chemistry Frontiers, 7 (2020) 1909-1917.
|