|
Ana, T. L. and Oswaldo, Garcia. Jr. (2002). Biological leaching of Mn, Al, Zn, Cu and Ti in an anaerobic sewage sludge effectuated by Thiobacillus ferrooxidansandits effect on metal partitioning. Water Res 13: 3193–3202. Aishvarya, V., Mishra, G., Pradhan, N. and Ghosh, M. K. (2016). Bioleaching of Indian Ocean nodules with in situ iron precipitation by anaerobic Mn reducing consortia. Hydrometallurgy 166: 130-135. Akinci, G. and Guven, D. E. (2011). Bioleaching of heavy metals contaminated sediment by pure and mixed cultures of Acidithiobacillus spp. Desalination 268 (1-3): 221-226. Al-Qodah, Z. (2006). Biosorption of heavy metal ions from aqueous solutions by activated sludge. Desalination 196 (1-3): 164-176. Boiardi, L., Pogliani, C., Donati E. (1997). Anaerobic leaching of covellite by Thiobacillus ferrooxidans. Appl Biochem Biotechnol 47 (6): 636–639 Bosecker, K. (1997). Bioleaching: metal solubilization by microorganisms. FEMS Microbiol. Rev 20 (3-4): 591-604. Castro, L., García-Balboa, C., González, F., Blázquez, M. L. and Muñoz, J. A. (2013). Effectiveness of anaerobic iron bio-reduction of jarosite and the influence of humic substances. Hydrometallurgy 131-132: 29-33. Chen, S. Y. and S. H. Pan (2010). Simultaneous metal leaching and sludge digestion by thermophilic microorganisms: effect of solids content. J Hazard Mater 179 (1-3): 340-347. Cho, K. S., Ryu, H. W., Lee, I. S. and Choi, H. M. (2002). Effect of solids concentration on bacterial leaching of heavy metals from sewage sludge. J Air Waste Manage Assoc 52 (2): 237-243. Couillard, D., Chartier, M. and Mercier, G. (1994). Major factors influencing bacterial leaching of heavy metals (Cu and Zn) from anaerobic sludge. Environ. Pollut 85 (2): 175-184. Donati, E., Pogliani, C. and Boiardi, J. L. (1997). Anaerobic leaching of covellite by Thiobacillus ferrooxidans. Appl Microbiol Biotechnol 47 (6): 636-639. du Plessis, C. A., Slabbert, W., Hallberg, K. B. and Johnson, D. B. (2011). Ferredox: A biohydrometallurgical processing concept for limonitic nickel laterites. Hydrometallurgy 109 (3-4): 221-229. Falagán, C., Grail, B. M. and Johnson, D. B. (2017). New approaches for extracting and recovering metals from mine tailings. Mater Eng 106: 71-78. Gu, X. Y., Wong, J. W. C. and Tyagi, R. D. (2017). Bioleaching of Heavy Metals From Sewage Sludge for Land Application. Curr Dev Biotechnol Eng : 241-265 Gu, X. and Wong, J. W. (2004). Identification of inhibitory substances affecting bioleaching of heavy metals from anaerobically digested sewage sludge. Environ Sci Technol 38 (10): 2934-2939. Gu, T., Rastegar, S. O., Mousavi, S. M., Li, M. and Zhou, M. (2018). Advances in bioleaching for recovery of metals and bioremediation of fuel ash and sewage sludge. Bioresour Technol 261: 428-440. Garcia Jr, O. J. and Lombardi, A. T. (2002). Biological leaching of Mn, Al, Zn, Cu and Ti in an anaerobic sewage sludge effectuated by Thiobacillus ferrooxidans and its effect on metal partitioning. Water Res 36 (13): 3193-202. Hallberg, K. B., Grail, B. M., Plessis, C. A. and Johnson, D. B. (2011). Reductive dissolution of ferric iron minerals: A new approach for bio-processing nickel laterites. Miner Eng 24 (7): 620-624. Hol, A., Weijden, R. D., Weert, G. V., Kondos, P. and Buisman, C. J. (2011). The effect of anaerobic processes on the leachability of an arsenopyrite refractory ore. Miner Eng 24 (6): 535-540 Jain, D. and Tyagi, R. (1992). Leaching of heavy metals from anaerobic sewage sludge by sulfur-oxidizing bacteria. Enzyme Microb Technol 14 (5): 376-383. Jain, D. and Tyagi, R. (1993). Factors affecting toxic metals removal from digested sewage sludge by enriched sulphur-oxidizing microorganisms. Bioresour Technol 45 (1): 33-41. Johnson, D. B. (2012). Reductive dissolution of minerals and selective recovery of metals using acidophilic iron-and sulfate-reducing acidophiles. Hydrometallurgy 127-128: 172-177. Johnson, D. B. (2014). Biomining — biotechnologies for extracting and recovering metals from ores and waste materials. Curr Opin Biotechnol 30: 24-31 Johnson, D. B. (2015). Biomining in reverse gear: Using bacteria to extract metals from oxidised ores. Miner Eng 75: 2-5 Tyagi, R., Meunier, N. and Blais, J. (1996). Simultaneous sewage sludge digestion and metal leaching—effect of temperature. Appl Microbiol Biotechnol 46 (4): 422-431. Liu, Y. G., Zhou, M., Zeng, G. M., Wang, X., X. Li, X. Fan, T. and Xu, W. H. (2008). Bioleaching of heavy metals from mine tailings by indigenous sulfur-oxidizing bacteria: effects of substrate concentration. Bioresour Technol 99 (10): 4124-4129. Liu, F., Zhou, L., Zhou, J., Song, X. and Wang, D. (2012). Improvement of sludge dewaterability and removal of sludge-borne metals by bioleaching at optimum pH. Hazard Waste Hazard Mater 221-222: 170-7. Manning, H. L. (1975) New medium for isolating iron-oxidizing and heterotrophic acidophilic bacteria from acid mine drainage. Adv Appl Microbiol 30 (6): 1010-1016. Marrero, J., Coto, O. and Schippers, A. (2017). Anaerobic and aerobic reductive dissolutions of iron-rich nickel laterite overburden by Acidithiobacillus. Hydrometallurgy 168: 49-55. Mousavi, S. M., Yaghmaei, S., Vossoughi, M., Jafari, A. and Hoseini, S. A. (2005). Comparison of bioleaching ability of two native mesophilic and thermophilic bacteria on copper recovery from chalcopyrite concentrate in an airlift bioreactor. Hydrometallurgy 80 (1-2): 139-144. Norris, P. R., Gould, O. J. P. and Ogden, T. J. (2015). Iron solubilization during anaerobic growth of acidophilic microorganisms with a polymetallic sulfide ore. Miner Eng 75: 77-84. Niu, Z., Huang, Q., Wang, J., Yang, Y., Xin, B. and Chen, S. (2015) Metallic ions catalysis for improving bioleaching yield of Zn and Mn from spent Zn-Mn batteries at high pulp density of 10%. J Hazard Mater 289: 170-177 Ohmura, N., Sasaki, K., Matsumoto, N. and Saiki, H. (2002) Anaerobic Respiration Using Fe3+, S0, and H2 in the Chemolithoautotrophic Bacterium Acidithiobacillus ferrooxidans. J Bacteriol 184 (8): 2081-2087. Villar, L. D. and Garcia, O. (2002). Solubilization profiles of metal ions from bioleaching of sewage sludge as a function of pH. Biotechnol Lett 24 (8): 611-614. Park, H. S., Lee, J. U. and Ahn, J. W. (2007). The effects of Acidithiobacillus ferrooxidans on the leaching of cobalt and strontium adsorbed onto soil particles. Environ Geochem Health 29 (4): 303-312. Ryu, H., Moon, H., Lee, E., Cho, K. and Choi, H. (2003). Leaching characteristics of heavy metals from sewage sludge by Acidithiobacillus thiooxidans MET. J Env Qual 32 (3): 751-759. Sethurajan, M., Hullebusch, E. D. and Nancharaiah, Y. V. (2018). Biotechnology in the management and resource recovery from metal bearing solid wastes: Recent advances. J Environ Manage 211: 138-153. Shanableh, A. and Ginige, P. (2000). Acidic bioleaching of heavy metals from sewage sludge. J. Mater. Cycles Waste Manage. 2 (1): 43-50. Smith, S. L., Grail, B. M. and Johnson, D. B. (2017). Reductive bioprocessing of cobalt-bearing limonitic laterites. Miner Eng 106: 86-90. Sreekrishnan, T. and Tyagi, R. (1994). Heavy metal leaching from sewage sludges: A techno‐economic evaluation of the process options. Environ Technol 15 (6): 531-543. Sreekrishnan, T. and Tyagi, R. (1996). A comparative study of the cost of leaching out heavy metals from sewage sludges. Process Biochem 31 (1): 31-41. Strasser, H., Brunner, H. and Schinner, F. (1995). Leaching of iron and toxic heavy metals from anaerobically-digested sewage sludge. J Ind Microbiol 14 (3-4): 281-287. Chen, S. Y. and Pan, S. H. (2010). Simultaneous metal leaching and sludge digestion by thermophilic microorganisms: effect of solids content. J Hazard Mater 179 (1-3): 340-347. Tyagi, R., J. Blais, J., Boulanger, B. and Auclair, J. (1993). Simultaneous municipal sludge digestion and metal leaching. J Env Sci & Health Part A 28 (6): 1361-1379. Tessier A., Campbell, P. G. and Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Rev Anal Chem 51 (7) 844-851. Tyagi, R., Blais, J., Meunier, N. and Benmoussa, H. (1997). Simultaneous sewage sludge digestion and metal leaching—effect of sludge solids concentration. Water Res 31 (1): 105-118. Tay, J. H. and Jeyaseelan, S (1993). Dewatering Characteristics of Oily Sludge. Wat Sci Tech 28 (1): 249-256. Torrento, C., Cama, J., Urmeneta, J., Otero, N. and Soler, A. (2010). Denitrification of groundwater with pyrite and Thiobacillus denitrificans. Chem Geol 278 (1-2): 80-91. Tyagi, R., Meunier, N. and Blais, J. (1996). Simultaneous sewage sludge digestion and metal leaching—effect of temperature. Appl Microbiol Biotechnol 46 (4): 422-431. Sreekrishnan, T.R. and Tyagi, R.D. (1996). A Comparative Study of the Cost of Leaching Out Heavy Metals from Sewage Sludges. Process Biochem 31 (1): 31-41 Sreekrishnan, T. R., Tyagi, R. D. and Campbell, P. G. C. (1996). Effect of sulfur concentration on sludge acidification during the SSDML process. Water Res 30 (11): 2728-2738. Villar, L. D. and Garcia, O. (2002). Solubilization profiles of metal ions from bioleaching of sewage sludge as a function of pH. Biotechnol Lett 24 (8): 611-614. Watling, H. R. (2006). The bioleaching of sulphide minerals with emphasis on copper sulphides — A review. Hydrometallurgy 84 (1-2): 81-108. Wei, X., Liu, D., Liao, L., Wang, Z., Li, W. and Huang, W. (2018). Bioleaching of heavy metals from pig manure with indigenous sulfur-oxidizing bacteria: effects of sulfur concentration. Heliyon 4 (9): e00778. Xiang, L., Chan, L. and Wong, J. (2000). Removal of heavy metals from anaerobically digested sewage sludge by isolated indigenous iron-oxidizing bacteria. Chemosphere 41(1-2): 283-287. Xiao, J., Yuan, H., Huang, X., Ma, J. and Zhu, N. (2019). Improvement of the sludge dewaterability conditioned by biological treatment coupling with electrochemical pretreatment. J Taiwan Inst Chem Eng 96: 453-462. Zhang, P., Zhu, Y., Zhang, G., Zou, S., Zeng, G. and Z, Wu. (2009). Sewage sludge bioleaching by indigenous sulfur-oxidizing bacteria: effects of ratio of substrate dosage to solid content. Bioresour Technol 100 (3): 1394-1398.
|