|
[1]A. G. Olabi, M. A. Abdelkareem, Renewable energy and climate change, Renewable and Sustainable Energy Reviews, Vacuum, 158 (2022) 112111 [2]IEA:Global electricity demand is growing faster than renewables, driving strong increase in generation from fossil fuels, News (2021). [3]IEA:Net Zero by 2050 A Roadmap for the Global Energy Sector [4]G. Olabi, K. Obaideen, K. Elsaid, T. Wilberforce, E. T. Sayed, H. M. Maghrabie, M. A. Abdelkareem, Assessment of the pre-combustion carbon capture contribution into sustainable development goals SDGs using novel indicators, Renewable and Sustainable Energy Reviews, Vacuum, 153 (2022) 111710 [5]陳文姿,三年內就會超越燃煤 IEA:2025年再生能源將成全球最大電力來源,環境資訊中心,2023 [6]J. Tian, S. Shan, B. Chen, Z. Zhou, Y. Zhang, Performance analysis and selective emitter design for an efficient concentrated solar thermophotovoltaic system based on cavity-structured absorber and high-bandgap cell, Thermal Science and Engineering Progress, Vacuum, 40 (2023) 101767 [7]K. Xu, M. Du, L. Hao, J. Mi, Q. Yu, S. Li, A review of high-temperature selective Absorbers coatings for solar thermal applications, Journal of Materiomics, Vacuum, 6 (2020) 167-182. [8]A. H. Alami, A. G. Olabi, A. Mdallal, A. Rezk, A. Radwan, Shek Mohammod Atiqure Rahman, Sheikh Khaleduzzaman Shah, Mohammad Ali Abdelkareem, Concentrating solar power (CSP) technologies: Status and analysis, International Journal of Thermofluids, Vacuum, 18 (2023) 100340 [9]Y. Xue, C. Wang, Y. Sun, Y. Wu, Y. Ning, W. Wang, Effects of the LMVF and HMVF absorption layer thickness and metal volume fraction on optical properties of the MoSi2–Al2O3 solar selective Absorbers coating, Vacuum, 104 (2014) 116-121 [10]M. Farchado, G. San Vicente, N. Barandica, D. Sánchez-Señorán, Á. Morales, High performance selective solar absorber stable in air for high temperature applications, Solar Energy Materials and Solar Cells Vacuum, 271 (2024) 112849 [11]H. Zhu, L. Shi, Shuaiqi Li, S. Zhang, W. Xia, Pressure effects on structural, electronic, elastic and lattice dynamical properties of XSi2 (X = Cr, Mo, W) from first principles, International Journal of Modern Physics B, Vacuum, 32 (2018) 1850120 [12]C.V. Sudheep, A. Verma, P. Jasrotia, J. J. L. Hmar, R. Gupta, A. S. Verma, Jyoti, A. Kumar, T. Kumar, Revolutionizing gas sensors: The role of composite materials with conducting polymers and transition metal oxides, Results in Chemistry Vacuum, 7 (2024)101255 [13]A. Yang, L. Bao, M. Peng, Y. Duan, Explorations of elastic anisotropies and thermal properties of the hexagonal TMSi2 (TM = Cr, Mo, W) silicides from first-principles calculations, materialstoday communications, Vacuum, 27 (2021) 102474 [14]Y. Lu, Y. Duan, M. Peng, J. Yi, C. Li, First-principles calculations of electronic, optical, phononic and thermodynamic properties of C40 - type TMSi2 (TM = Cr, Mo, W) disilicides, Vacuum, 191 (2021) 110324 [15]Y. Pan, J. Wang, D. Wang, H. Deng, Influence of vacancy on the elastic properties, ductility and electronic properties of hexagonal C40 MoSi2 from first-principles calculations, Vacuum, 179 (2020) 109438 [16]W. Wang, X. Huan, Y. Li, Spectral response and structural analyses of reactively sputtered molybdenum oxides for selective solar absorption, Ceramics International, Vacuum, 47 (2021) 18893-18897 [17]O. Kauss, S. Obert, I. Bogomol, T. Wablat, N. Siemensmeyer, K. Naumenko, M. Krüger, Temperature Resistance of Mo3Si: Phase Stability, Microhardness and Creep Properties, MDPI, High-Temperature Behavior of Metals, Metals (2021) [18]A. Rodríguez-Palomo, E. Céspedes, D. Hernández-Pinilla, C. Prieto, High-temperature air-stable solar selective coating based on MoSi2–Si3N4 composite, Solar Energy Materials and Solar Cells, Vacuum, 174, (2018) 50-55 [19]G. Chartier, Introduction to Optics, Springer-Verlag New York 2005 [20]C. S. Solanki, H. K. Singh, Principle of Dielectric-Based Anti-reflection and Light Trapping, Green Energy and Technology (2017) 43-64 [21]B. Qi, H. Shou, J. Zhang, W. Chen, J. Feng, T. Niu, Z. Mei, A near-perfect metamaterial selective absorber for high-efficiency solar photothermal conversion, International Journal of Thermal Sciences, Vacuum, 194 (2023) 108580 [22]S. Wang, Q. Ma, R. Wu, W. Ding, J. Guo, Transfer‐Learning‐Enabled 3D reconfigurable broadband solar metamaterial absorbers design, Optics Communications ,Vacuum, 564 (2024) 130644 [23]A. Sharifi Rad, A. Afshar, M. Azadeh, Antireflection and photocatalytic single layer and double layer ZnO and ZnO–TiO2 thin films, Optical Materials, Vacuum, 136, (2023) 113501 [24]G. G. Welegergs, Z. M Mehabaw, H. G. Gebretinsae, M. G. Tsegay, L. Kotsedi, Z. Khumalo, N. Matinisie, Z. T. Aytuna, S. Mathur, Z. Y. Nuru, S. Dube, M. Maaza, Electrodeposition of nanostructured copper oxide (CuO) coatings as spectrally solar selective absorber: Structural, optical and electrical properties, Infrared Physics & Technology, Vacuum, 133 (2023) 104820 [25]G. G. Welegergs, H. G. Gebretinsae, M. G. Tsegay, A. Bhardwaj, S. Mathur, T. G. Kebede, Z. Y. Nuru, S. Dube, M. Maaza, Spectrally selective single layered Ag@CuO nanocermet coatings for photothermal application: Green synthesis method, Optical Materials, Vacuum, 135, January (2023) 113247 [26]N. Murugesan, S. Suresh, M. Kandasamy, S. Murugesan, N. Pugazhenthiran, V. P. Venkatesh, B. K. Balachandar, S. K. Kumar, M. N. M. Ansari, Facile dip-coating assisted preparation of reduced graphene oxide-copper oxide nanocomposite thin films on aluminum substrate for solar selective absorber, Physica B: Condensed Matter, Vacuum, 669 (2023) 415288 [27]P. Kondaiah, K. Niranjan, S. John, H. C. Barshilia, Tantalum carbide based spectrally selective coatings for solar thermal absorber applications, Solar Energy Materials and Solar Cells ,Vacuum, 198, (2019) 26-34 [28]M. Tsegay, H. Gebretinsae, G. Welegergs, M. Maaza, Z. Nuru, Novel green synthesized Cr2O3 for selective solar absorber: Investigation of structural, morphological, chemical, and optical properties, Solar Energy, Vacuum, 236 (2022) 308-319 [29]C. Y. He, P. Zhao, X. L. Qiu, B. H. Liu, G. Liu, X. H. Gao, Engineering a Versatile Spectrally Selective Absorber for Moderate-and Low-Temperature Application with Gradient High-Entropy Nitride Nanofilms, Solar RRL (2021) [30]A. Ambrosini, T. N. Lambert, C. L. Staiger, A. C. Hall, M. Bencomo, E. B. Stechel, Improved High Temperature Solar Absorbers for Use in Concentrating Solar Power Central Receiver Applications, Office of Scientific & Technical Information Technical Reports (2010) 587-594 [31]X. L. Qiu, X. H. Gao, C. Y. He, G. Liu, A novel solar absorber coating based on Mo-MoO3 nanocrystalline embedded into amorphous TiC: Microstructure, thermal stability and failure analysis, Infrared Physics & Technology, Vacuum, 109 (2020) 103407 [32]D. Yang, X. Zhao, Y. Liu, J. Li, H. Liu, X. Hu, Z. Li, J. Zhang, J. Guo, Y. Chen, B. Yang, Enhanced thermal stability of solar selective absorber based on nano-multilayered AlCrSiO films, Solar Energy Materials and Solar Cells, Vacuum, 207 (2020) 110331 [33]A. Amri, Z. T. Jiang, T. Pryor, Y. Chun-Yang, S. Djordjevic, Developments in the synthesis of flat plate solar selective absorber materials via sol-gel methods: A review, Renewable and Sustainable Energy Reviews, Vacuum, 36 (2014) 316-328 [34]B. Zhang, L. Li, S. K. Chamoli, Q. Chen, X. Ran, K. Zhao, Z. Chen, Design of near-ideal and omnidirectional selective solar absorber for high-temperature applications, Solar Energy Materials and Solar Cells, Vacuum, 257 (2023) 112383 [35]W. Platzer, C. Hildebrandt, Absorber materials for solar thermal receivers in concentrating solar power (CSP) systems, Concentrating Solar Power Technology Principles, Developments and Applications Woodhead Publishing Series in Energy (2012) 469-494 [36]L. Kong, D. Fan, W. Wang, C. Wang, Spectral properties and microstructure of sputtered WOx filmsfor solar conversion applications, Wiley Analytical Science, Vacuum, 52 (2020) 407-412 [37]M. G. Tsegay, H. G. Gebretinsae, G. G. Welegergs, M. Maaza, Z. Y. Nuru, Novel green synthesized Cr2O3 for selective solar absorber: Investigation of structural, morphological, chemical, and optical properties, Solar Energy, Vacuum, 236 (2022) 308-319 [38]R. K. Poobalan, H. C. Barshilia, B. Basu, Recent trends and challenges in developing boride and carbide-based solar absorbers for concentrated solar power, Solar Energy Materials and Solar Cells, Vacuum, 245 (2022) 111876 [39]K. K. Wang, Z. Z. Wu, C. J. Peng, K. P. Wang, B. Cheng, C. L. Song, G. R. Han, Y. Liu, A facile process to prepare crosslinked nano-graphites uniformly dispersed in titanium oxide films as solar selective absorbers, Solar Energy Materials and Solar Cells, Vacuum, 143 (2015) 198-204 [40]X. Wang, W. Fang, Y. Ma, X. Cheng, K. Li, Thermal stability of AlCrO antireflection layer for high-temperature cermet-based solar selective absorber applications, Ceramics International, Vacuum, 49 (2023) 38122-38130 [41]X. Wang, T. Luo, Q. Li, X. Cheng, K. Li, High performance aperiodic metal-dielectric multilayer stacks for solar energy thermal conversion, Solar Energy Materials and Solar Cells, Vacuum, 191 (2019) 372-380 [42]A. Rodríguez-Palomo, E. Céspedes, D. Hernández-Pinilla, C. Prieto, High-temperature air-stable solar selective coating based on MoSi2–Si3N4 composite, Solar Energy Materials and Solar Cells, Vacuum, 174 (2018) 50-55 [43]A. Santagata, M. L. Pace, A. Bellucci, M. Mastellone, E. Bolli, V. Valentini, S. Orlando, E. Sani, S. Failla, D. Sciti, D. M. Trucchi, Enhanced and Selective Absorption of Molybdenum Nanostructured Surfaces for Concentrated Solar Energy Applications, Multidisciplinary Digital Publishing Institute, Vacuum, 15 (2022) 8333 [44]K. Kant, K. P. Sibin, R. Pitchumani, Novel fractal-textured solar absorber surfaces for concentrated solar power, Solar Energy Materials and Solar Cells, Vacuum, 248 (2022) 112010 [45]J. Yang, H. Shen, Z. Yang, Q. Zhao, Hybrid-structured air-stable solar selective absorber on flexible textured silicon, Solar Energy, Vacuum, 231 (2022) 837-845 [46]R. Jain, R. Pitchumani, Fabrication and characterization of multiscale, fractal textured solar selective coatings, Solar Energy Materials and Solar Cells, Vacuum, 172 (2017) 213-219 [47]J. Kim, D. Kim, W. Kim, S. Woo, S.-W. Baek, M. J. Ko, Younghoon Kim, Efficient semi-transparent perovskite quantum dot photovoltaics enabled by asymmetric dielectric / metal / dielectric transparent electrodes, Chemical Engineering Journal, Vacuum, 469 (2023) 143824 [48]J. Ren, D. Liang, H. Liu, Y. Yang, A. Li, Y. Sun, C. Wang, High-temperature thermal stable solar selective Absorbers coating based on the dielectric-metal-dielectric structure, Materials Today Physics, Vacuum, 34 (2023) 101092 [49]H. R. Bahrami, S. Khosravi, High performance GaAs ultrathin film solar cell based on optimized antireflection coating and dielectric nano-cylinders, Physica B: Condensed Matter, Vacuum, 685 (2024) 416059 [50]X. Zhang, T. Zeng, C. Song, J. Shao, M. Zhu, Plasma-enhanced atomic-layer-deposited HfO2-SiO2 nanolaminates for broadband antireflection coatings, Optical Materials, Vacuum, 150 (2024) 115282 [51]X. Wang, W. Fang, Y. Ma, X. Cheng, K. Li, Thermal stability of AlCrO antireflection layer for high-temperature cermet-based solar selective absorber applications, Ceramics International, Vacuum, 49 (2023) 38122-38130 [52]Y. Zhang, G. Feng, S. Tan, M. Zhou, W. Gu, X. Guan, T. Xu, S. Miao, G. Ji, Mn0.6Ni1.4Co2Oy micro-nano tower structure with tunable spectral selectivity interface for infrared stealth and solar selective coating application, Progress in Organic Coatings, Vacuum, 187 (2024) 108172 [53]E. Sani, D. Sciti, S. Failla, A. Bellucci, M. Mastellone, S. Orlando, D. M. Trucchi, Bulk ceramics of lanthanum hexaboride with enhanced spectral selectivity and photothermal efficiency for novel hybrid thermal-thermionic solar absorbers, Solar Energy, Vacuum, 271(2024) 112423 [54]R. Escobar-Galindo, I. Heras, E. Guillén, F. Lungwitz, G. Rincón-Llorente, F. Munnik, I. Azkona, M. Krause, Exceptional high-temperature in-air stable solar absorber coatings based on aluminium titanium oxynitride nanocomposites, Solar Energy Materials and Solar Cells, Vacuum, 271 (2024) 112865 [55]L. Jiang, B. Zheng, C. Wu, P. Li, T. Xue, J. Wu, F. Han, A Review of Mo-Si Intermetallic Compounds as Ultrahigh-Temperature Materials, MDPI, Vacuum, 10 (2022) 1009-1772 [56]T. Fu, Y. Zhang, L. Chen, F. Shen, J. Zhu, Micromorphology evolution, growth mechanism, and oxidation behaviour of the silicon-rich MoSi2 coating at 1200 °C in air, Journal of Materials Research and Technology, Vacuum, 29 (2024) 491-503 [57]A. Bahr, S. Richter, R. Hahn, T. Wojcik, M. Podsednik, A. Limbeck, J. Ramm, O. Hunold, S. Kolozsvári, H. Riedl, Oxidation behaviour and mechanical properties of sputter-deposited TMSi2 coatings (TM = Mo, Ta, Nb), Journal of Alloys and Compounds, Vacuum, 931 (2023) 167532 [58]Y. Lu, Y. Duan, M. Peng, J. Yi, C. Li, First-principles calculations of electronic, optical, phononic and thermodynamic properties of C40-type TMSi2 (TM = Cr, Mo, W) disilicides, Vacuum, 191 (2021) 110324 [59]Y. Pan, J. Wang, D. Wang, H. Deng, Influence of vacancy on the elastic properties, ductility and electronic properties of hexagonal C40 MoSi2 from first-principles calculations, Vacuum, 179 (2020) 109438 [60]S. P. Chakraborty, Development of Protective Coating of MoSi2 over TZM Alloy Substrate by Slurry Coating Technique, materials today: proceedings, Vacuum, 3 (2016) 3071-3076 [61]X. P. Li, S. P. Sun, H. J. Wang, W. N. Lei, Y. Jiang, D. Q. Yi, Electronic structure and point defect concentrations of C11b MoSi2 by first-principles calculations, Journal of Alloys and Compounds, Vacuum, 605 (2014) 45-50 [62]M. A. Azim, H.-J. Christ, B. Gorr, T. Kowald, O. Lenchuk, K. Albe, M. Heilmaier, Effect of Ti addition on the thermal expansion anisotropy of Mo5Si3, Acta Materialia, Vacuum, 132, (2017) 25-34 [63]D. Pu, Y. Pan, First-principles investigation of oxidation mechanism of Al-doped Mo5Si3 silicide, Ceramics International, Vacuum, 48 (2022)11518-11526 [64]D. Hernández-Pinilla, A. Rodríguez-Palomo, L. Álvarez-Fraga, E. Céspedes, J. E. Prieto, A. Muñoz-Martín, C. Prieto, MoSi2-Si3N4 absorber for high temperature solar selective coating, Solar Energy Materials and Solar Cells, Vacuum, 152 (2016) 141-146 [65]Y. Chang, X. Ma, P. Zhao, Flexible MoO2 coated PTEF membrane for stable solar steam generation in harsh environments, Solar Energy Materials and Solar Cells, Vacuum, 254 (2023) 112240 [66]A. Chithambararaj, N. Rajeswari Yogamalar, A. Chandra Bose, Hydrothermally Synthesized h-MoO3 and α-MoO3 Nanocrystals:New Findings on Crystal-Structure-Dependent Charge Transport, Crystal Growth & Design, Vacuum, 24 (2024) [67]M. Kundu, D. Mondal, I. Mondal, A. Baral, P. Halder, S. Biswas, B. K. Paul, N. Bose, R. Basu, S. Das, A rational preparation strategy of phase tuned MoO3 nanostructures for high-performance all-solid asymmetric supercapacitor, Journal of Energy Chemistry, Vacuum, 87 (2023) 192-206 [68]Y. Niu, H. Su, X. Li, J. Li, Y. Qi, Synthesis of porous α-MoO3 microspheres as electrode materials for supercapacitors, Journal of Alloys and Compounds, Vacuum, 898 (2022) 162863 [69]J. Fink, J. Berry, G. Fedynich, K. Ghosh, Structural and Electrical Properties of 2-D Transition Metal Oxides, Missouri University of Science and Technology, 32nd Annual Spring Meeting of the NASA-Missouri Space Grant Consortium (2023) [70]K. Sheth, P. Kondaiah, K. Niranjan, S. Bysakh, G. Srinivas, H. C. Barshilia, Enhanced photothermal conversion in nanometric scale MoOx multilayers with Al2O3 passivation layer, Thin Solid Films, Vacuum, 701(2020) 137947 [71]M. Bello, S. Shanmugan, Achievements in mid and high-temperature selective absorber coatings by physical vapor deposition (PVD) for solar thermal Application-A review, Journal of Alloys and Compounds, Vacuum, 25 (2020) 155510 [72]M. S. Rafique, M. Rafique, M. B. Tahir, S. Hajra, T. Nawaz, F. Shafiq, Synthesis methods of nanostructures, Nanotechnology and Photocatalysis for Environmental Applications, Micro and Nano Technologies (2020) 45-56 [73]A. A. Zainudin, Y. W. Fen, N. A. Yusof, N. A. S. Omar, Structural, optical and sensing properties of ionophore doped graphene based bionanocomposite thin film, Optik, Vacuum, 144 (2017) 308-315 [74]K. Dincer, B. Waisi, G. Önal, N. Tuğluoğlu, J. McCutcheon, Ö. F. Yüksel, Investigation of optical and dispersion parameters of electrospinning grown activated carbon nanofiber (ACNF) layer, Synthetic Metals, Vacuum, 237 (2018) 16-22 [75]N. A. A. Anas, Y. W. Fen, N. A. S. Omar, N. S. Md Ramdzan, W. M. E. M. M. Daniyal, S. Saleviter, A. A.Zainudin, Optical properties of chitosan/hydroxyl-functionalized graphene quantum dots thin film for potential optical detection of ferric (III) ion, Optics & Laser Technology, Vacuum, 120 (2019) 105724 [76]Ö. B. Mergen, E. Arda, Determination of Optical Band Gap Energies of CS/MWCNT Bio-nanocomposites by Tauc and ASF Methods, Synthetic Metals, Vacuum, 269 (2020) 116539 [77]N. M. Ravindra, P. Ganapathy, J. Choi, Energy gap-refractive index relations in semiconductors - An overview, Infrared Physics & Technology, Vacuum, 50 (2007) 21-29 [78]平山令明,葉亞璇譯,X光的科學與運用,晨新出版 (2012) 52-61 [79]G. Lawes, A. M. James, Scanning Electron Microscopy and X-ray Microanalysis, Thames Polytecnic ACOL (1987) [80]W. R. Runyan, T. J. Shaffner, Semiconductor Measurements and Instrumentation (1998) [81]Y. Q. Liu, G. Shao, P. Tsakiropoulos, On the oxidation behaviour of MoSi2, Intermetallics, Vacuum, 9 (2001) 125-136 [82]S. Knittel, S. Mathieu, M. Vilasi, Oxidation behaviour of arc-melted and uniaxial hot pressed MoSi2 at 500 °C, Intermetallics, Vacuum,18 (2010) 2267-2274 [83]M. Samadzadeh, C. Oprea, H. Karimi Sharif, T. Troczynski, Comparative studies of the oxidation of MoSi2 based materials: Low-temperature oxidation (300–900 °C), International Journal of Refractory Metals and Hard Materials, Vacuum, 66 (2017) 11-20 [84]K. Kurokawa, H. Houzumi, I. Saeki, H. Takahashi, Low temperature oxidation of fully dense and porous MoSi2, Materials Science and Engineering: A, Vacuum,261 (1999) 292-299 [85]F. Li, X. Yu, X. Shi, D. Sun, H. Du, Y. Shao, J. Wang, S. Zhang, Enhancing oxidation resistance of Mo metal substrate by sputtering an MoSi2(N) interlayer as diffusion barrier of MoSi2(Si) surface coating, Surface and Coatings Technology, Vacuum, 466 (2023) 129654 [86]N. Li, J. Gao, W. Wang, S.-C. Chen, K. Wang, Y. Wang, C.-K. Wen, H. Sun, Oxidation resistance of Cr-modified MoSi2 composites at high temperature, International Journal of Refractory Metals and Hard Materials, Vacuum, 119 (2024) 106497 [87]J. H. Westbrook, D. L. Wood,“PEST” degradation in beryllides, silicides, aluminides, and related compounds, Journal of Nuclear Materials, Vacuum, 12 (1964) 208-215 [88]C. Quan, X. Yang, J. Luo, Z. Wang, Y. Feng, J. Zhang, W. Chen, B. Liang, Preparation of MoSi2@ZrO2 core-shell powders by hydrothermal-calcination and evaluation of low-temperature oxidation resistance, Ceramics International, Vacuum, 49 (2023) 12662-12671 [89]J. H. Westbrook, High-temperature applications of intermetallic compounds, Applications of Intermetallic Compounds, Vacuum, 21 (1996) 30-36 [90]T. C. Chou, T. G. Nieh, Pest disintegration of thin MoSi2 films by oxidation at 500° C, Journal of Materials Science, Vacuum, 29 (1994) 2963-2967 [91]J. Schlichting, Molybdenum disilicide as a component of modern high-temperature composites, High Temp High Pressures, Vacuum, 10 (1978) 241-269 [92]J. B. Berkowitz-Mattuck, M. Rossetti, D. W. Lee, Enhanced oxidation of molybdenum disilicide under tensile stress: relation to pest mechanisms, Vacuum, 1 (1970) 479-483 [93]D. A. Berztiss, R. R. Cerchiara, E. A. Gulbransen, F. S. Pettit, G. H. Meier, Oxidation of MoSi2 and comparison with other silicide materials, Materials Science and Engineering: A, Vacuum, 155 (1992) 165-181 [94]P. J. Meschter, Low-temperature oxidation of molybdenum disilicide, Metallurgical Transactions A, Vacuum, 23 (1992) 1763-1772 [95]C. G. McKamey, P. F. Tortorelli, J. H. DeVan, C. A. Carmichael, A study of pest oxidation in polycrystalline MoSi2, Journal of Materials Research, Vacuum, 7 (1992) 2747-2755 [96]S. Knittel, S. Mathieu, M. Vilasi, Oxidation behaviour of arc-melted and uniaxial hot pressed MoSi2 at 500 °C, Intermetallics, Vacuum, 18 (2010) 2267-2274 [97]X. Yu, F. Li, X. Shi, D. Sun, J. Wang, S. Zhang, Suppression of pesting failure in MoSi2 film by doping of Si, Surface and Coatings Technology, Volume 442, July (2022) 128016 [98]F. F. Oloye, Raman spectroscopy and XRD study on molybdenum oxide supported titania, Results in Materials, Vacuum,5 (2020) 100064 [99]M. Mohammadbeigi, L. Jamilpanah, B. Rahmati, S. M. Mohseni, Sulfurization of planar MoO3 optical crystals: Enhanced Raman response and surface porosity, Materials Research Bulletin, Vacuum, 118 (2019) 110527 [100]D. E. Diaz-Droguett, R. El Far, V. M. Fuenzalida, A. L. Cabrera, In situ-Raman studies on thermally induced structural changes of porous MoO3 prepared in vapor phase under He and H2, Materials Chemistry and Physics, Vacuum, 134 (2012) 631-638 [101]A. G. Krishna, R. V. S. S. N. Ravikumar, T. Vijaya Kumar, S. Daniel Ephraim, B. Ranjith, M. Pranoy, D. Sundee, Investigation and Comparison of Optical and Raman Bands of Mechanically Synthesised MoO3 Nano Powders, Materialstoday: PROCEEDINGS, Vacuum, 3 (2016) 54-63 [102]G. Dobos, K. V. Josepovits, Á. Böröczki, I. Csányi, G. Hárs, Heat treatment of molybdenum under vacuum conditions, International Journal of Refractory Metals and Hard Materials, Vacuum, 27 (2009) 764-767 [103]L. Qiu, K. Chen, D. Yang, M. Zhang, X. Hao, W. Li, J. Zhang, W. Wang, Metal copper induced the phase transition of MoO3 to MoO2 thin films for the CdTe solar cells, Materials Science in Semiconductor Processing, Vacuum, 122 (2021) 105475 [104]M. Kumar, E.-C. Cho, M. F. Prodanov, C. Kang, A. K. Srivastava, J. Yi, MoOx work function, interface structure, and thermal stability analysis of ITO/MoOx/a-Si(i) stacks for hole-selective silicon heterojunction solar cells, Applied Surface Science, Vacuum, 553 (2021) 149552 [105]S. Touihri, A. Arfaoui, Y. Tarchouna, A. Labidi, M. Amlouk, J. C. Bernede, Annealing effect on physical properties of evaporated molybdenum oxide thin films for ethanol sensing, Applied Surface Science, Vacuum, 394 (2017) 414-424 [106]X. Liao, A. R. Jeong, R. G. Wilks, S. Wiesner, M. Rusu, R. Félix, T. Xiao, C. Hartmann, M. Bär, Tunability of MoO3 Thin-Film Properties Due to Annealing in Situ Monitored by Hard X-ray Photoemission, ACS Publications, Vacuum, 4 (2019) 10985-10990
|