|
[1] H. Dai, M. Li, Y. Li, H. Yu, F. Bai, and X. Ren, “Effective light trapping enhancement by plasmonic Ag nanoparticles on silicon pyramid surface,” Optics Express, Vol. 20, p. A502, 2012. [2] M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chemical Reviews, Vol. 111, p. 3669, 2011. [3] D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yub, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Applied Physics Letters, Vol. 89, p. 093103, 2006. [4] C. Rockstuhl, S. Fahr, and F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons,” Journal of Applied Physics, Vol. 104, p. 123102, 2008. [5] Z. Q. Zhou, L. X. Wang, W. Shi, S. L. Sun, and M. Lu, “A synergetic application of surface plasmon and field effect to improve Si solar cell performance,” Nanotechnology, Vol. 27, p. 145203, 2016. [6] S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” Journal of Applied Physics, Vol. 101, p. 093105, 2007. [7] L. Zhou, X. Yu, and J. Zhu, “Metal-core/semiconductor-shell nanocones for broadband solar absorption enhancement,” Nano Letters, Vol. 14, p. 1093, 2014. [8] X. Chen, B. Jia, J. K. Saha, B. Cai, N. Stokes, Q. Qiao, Y. Wang, Z. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Letters, Vol. 12, p. 2187, 2012. [9] C. Huh, C. J. Choi, W. Kim, B. K. Kim, and B. J. Park, “Effective light trapping enhancement by plasmonic Ag nanoparticles on silicon pyramid surface,” Applied Physics Letters, Vol. 100, p. 118108, 2012. [10] H. R. Stuart, and D. G. Hall, “Island size effects in nanoparticle-enhanced photodetectors,” Applied Physics Letters, Vol. 73, No. 26, p. 3815, 1998. [11] H. R. Stuart, and D. G. Hall, “Absorption enhancement in silicon on insulator waveguides using metal island films,” Applied Physics Letters, Vol. 69, No. 16, p. 2327, 1996. [12] T. D. Dzhafarov, A. M. Pashaev, B. G. Tagiev, S. S. Aslanov, S. H. Ragimov and A. A. Aliev, “Influence of silver nanoparticles on the photovoltaic parameters of silicon solar cells,” Advances in Nano Research, Vol. 3, No. 3, p. 133, 2015. [13] K. R. Catchpole, and A. Polman, “Plasmonic solar cells,” Optics Express, Vol. 16, No. 26, p. 21793, 2008. [14] J. Yun, J. Kim, H. S. Kojori, S. J. Kim, C. Tong, and W. A. Anderson, “Current enhancement of aluminum doped ZnO/n-Si isotype heterojunction solar cells by embedding silver nanoparticles,” Nanoscience and Nanotechnology, Vol. 13, p. 5547, 2013. [15] S. Maity, S. Roy, and A. Kumar, “Silver nanoparticles to enhance the efficiency of silicon solar cells,” Engineering Science Invention, Vol. 2, p. 101, 2013. [16] P. Asanithi, S. Chaiyakun, and P. Limsuwan, “Growth of silver nanoparticles by dc magnetron sputtering,” Journal of Nanomaterials, Vol. 2012, No. 79, p. 79, 2012. [17] D. D. Evanoff Jr., and G. Chumanov, “Synthesis and optical properties of silver nanoparticles and arrays,” ChemPhysChem, Vol. 6, p. 1221, 2005. [18] S. K. Sardana, V. S. N. Chava, and V. K. Komarala, “Morphology and optical properties of sputter deposited silver nanoparticles on plain, textured and antireflection layer coated textured silicon,” Applied Surface Science, Vol. 347, p. 651, 2015. [19] D. Das, and L. Karmakar, “Further optimization of ITO films at the melting point of Sn and configuration of ohmic contact at the c-Si/ITO interface,” Applied Surface Science, Vol. 481, p. 16, 2019. [20] M. M. Aliyu, S. Hossain, J. Husna, N. Dhar, M. Q. Huda, K. Sopian, and N. Amin, “High quality indium tin oxide (ITO) film growth by controlling pressure in rf magnetron sputtering,” IEEE Xplore, vol. 2012, p. 002009, 2012. [21] J. B. Choi, J. H. Kim, K. A. Jeon, and S. Y. Lee, “Properties of ITO films on glass fabricated by pulsed laser deposition,” Materials Science and Engineering, Vol. B102, p. 376, 2003. [22] S. M. Kim, Y. S. Rim, M. J. Keum, and K. H. Kim, “Study on the electrical and optical properties of ITO and AZO thin film by oxygen gas flow rate,” Journal of Electroceramics, Vol. 23, p. 341, 2009. [23] I. A. Rauf, “Low resistivity and high mobility tin-doped indium oxide films,” Materials Letters, Vol. 18, p. 123, 1993. [24] D. Das, and P. Mondal, “Low temperature grown ZnO:Ga films with predominant c-axis orientation in wurtzite structure demonstrating high conductance, transmittance and photoluminescence,” Royal Society of Chemistr Advances, Vol. 6, p. 6144, 2016. [25] S. Elhalawaty, K. Sivaramakrishnan, N. D. Theodore, and T. L. Alford, “The effect of sputtering pressure on electrical, optical and structure properties of indium tin oxide on glass,” Thin Solid Films, Vol. 518, p. 3326, 2010. [26] D. H. Kim, M. R. Park, and G. H. Lee, “Preparation of high quality ITO films on a plastic substrate using rf magnetron sputtering,” Surface & Coatings Technology, Vol. 201, p. 927, 2006. [27] F. El Akkad, A. Punnoose, and G. Prabu, “Properties of ITO films prepared by rf magnetron sputtering, ” Applied Physics, Vol. A71, p. 157, 2000. [28] G. Haacke, “New figure of merit for transparent conductors,” Applied Physics, Vol. 47, No. 9, p. 4086, 1976. [29] W. K. Lee, T. Machino, and T. Sugihara, “Low pressure and temperature deposition of transparent conductive indium tin oxide (ITO) films by the face target sputtering (FTS) process,” Thin Solid Films, Vol. 224, p. 105, 1993. [30] M. Naoe, S.Yamanaka, and Y. Hoshi, “Facing targets type of sputtering method for deposition of magnetic metal films at low temperature and high rate,” IEEE Transactions on Magnetics, Vol. MAG-16, No. 5, p. 646, 1980. [31] H. Y. Yu, X. D. Feng, D. Grozea, and Z. H. Lu, “Surface electronic structure of plasma treated indium tin oxides,” Applied Physics Letters, Vol. 78, p.2595, 2001. [32] L. Zhao, C. L. Zhou, H. L. Li, H. W. Diao, and W. J. Wang, “Role of the work function of transparent conductive oxide on the performance of amorphous/crystalline silicon heterojunction solar cells studied by computer simulation,” Applications and Materials Science, Vol. 205, p. 1215, 2008. [33] E. Centurioni, and D. Iencinella, “Role of front contact work function on amorphous silicon/crystalline silicon heterojunction solar cell performance,” IEEE Electron Device Letters, Vol. 24, p. 177, 2003. [34] Y. S. Park, E. Kim, B. Hong, and J. Lee, “Characteristics of ITO films with oxygen plasma treatment for thin film solar cell applications,” Materials Research Bulletin, Vol. 48, p. 5115, 2013. [35] H. Parka, D. Kim, E. C. Choa, S. Q. Hussain, J. Park, D. Lim, S. Kimc, S. Dutta, Mallem Kumar, Y. Kima, and J. Yi, “Effect on the reduction of the barrier height in rear-emitter silicon heterojunction solar cells using Ar plasma-treated ITO film,” Current Applied Physics, Vol. 20, p. 219, 2020. [36] A. Klein, C. Korber, A. Wachau, F. Sauberlich, Y. Gassenbauer, Steven P. Harvey, D. E. Proffit, and T. O. Mason, “Transparent conducting oxides for photovoltaics: manipulation of fermi level,work function and energy band alignment,” Materials, Vol. 3, p. 4892, 2010. [37] H. Ishii, K. Sugiyama, E. Ito, and K. Seki, “Energy level alignment and interfacial electronic structures at organic/metal and organic/organic interfaces, ” Advanced Materials, Vol. 11, NO. 8 p. 605, 1999. [38] W. R. Salaneck, M. Fahlman, G.Greczynski, and T. Kugler, “The electronic structure of polymer metal interfaces studied by ultraviolet photoelectron spectroscopy, ” Materials Science and Engineering , Vol. R34, p. 121, 2001. [39] Y. Gassenbauer, and A. Klein, “Electronic and chemical properties of tin-doped indium oxide (ITO) surfaces and ITO/ZnPc interfaces studied in-situ by photoelectron spectroscopy,” The Journal of Physical Chemistry , Vol. 110, p. 4793, 2006. [40] M. G. Sous, and A. F. d. Cunha, “Optimization of low temperature rf-magnetron sputtering of indium tin oxide films for solar cell applications, ” Applied Surface Science, Vol. 484, NO. 110, p. 257, 2019. [41] L.R. Cruza, C. Legnania, I. G. Matosoa, C. L. Ferreiraa, and H. R. Moutinho, “Influence of pressure and annealing on the microstructural and electro-optical properties of rf magnetron sputtered ITO thin films,” Materials Research Bulletin, Vol. 39, p. 993, 2004. [42] M. L. Addonizio, E. Gambale, and A. Antonaia, “Microstructure evolution of room-temperature-sputtered ITO films suitable for silicon heterojunction solar cells,” Current Applied Physics, Vol. 20, p. 953, 2020. [43] J. Bullock, A. Cuevas, T. Allen, and C. Battaglia, “Molybdenum oxide MoOx: a versatile hole contact for silicon solar cells,” Applied Physics Letters, Vol. 105, p. 232109, 2014. [44] M. Taguchi, A. Yano, S. Tohoda, K. Matsuyama, Y. Nakamura, T. Nishiwaki, K. Fujita, and E. Maruyama, “24.7% record efficiency HIT solar cell on thin silicon wafer,” IEEE Journal of Photovoltaics, Vol. 4, NO. 1, p. 96, 2014. [45] K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai, N. Yoshimura, T. Yamaguchi, Y. Ichihashi, T. Mishima, N. Matsubara, T. Yamanishi, T Takahama, M. Taguchi, E. Maruyama, and S. Okamoto, “Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell,” IEEE Journal of Photovoltaics, Vol. 4, p. 1433, 2014. [46] C. Battaglia, X. Yin, M. Zheng, I. D. Sharp, T. Chen, S. McDonnell, A. Azcatl, C. Carraro, B. Ma, R. Maboudian, R. M. Wallace, and A. Javey, “Hole selective MoOx contact for silicon solar cells,” Nano Letters, Vol. 14, p. 967, 2014. [47] C. Battaglia, S. M. D. Nicolas, S. D. Wolf, X. Yin, M Zheng, C. Ballif, and A. Javey, “Silicon heterojunction solar cell with passivated hole selective MoOx contact,” Applied Physics Letters, Vol. 104, p. 113902, 2014. [48] J. Meyer, S. Hamwi, M. Kröger, W. Kowalsky, T. Riedl, and A. Kahn, “Transition metal oxides for organic electronics : energetics, device physics and applications,” Advanced Materials, Vol. 24, p. 5408, 2012. [49] S. Chuang, C. Battaglia, A. Azcatl, S. McDonnell, J. S. Kang, X. Yin, M Tosun, R. Kapadia, H. Fang, R. M. Wallace, and A. Javey, “MoS2 p‑type transistors and diodes enabled by high work function MoOx contacts,” Nano Letters, Vol. 14, p. 1337, 2014. [50] X. Liu, Q. Huang, X. Yang, J. Zhou, C. Ren, X. Su, Z. Xu, Y. Zhao, and G. Hou, “Simulation of p-type c-Si solar cells with metal oxides as carrier-selective contacts,” Solar Energy, Vol. 240, p. 84, 2022. [51] J. Geissbuhler, J. Werner, S. M. d. Nicolas, L. Barraud, A. H. Wyser, M. Despeisse, S. Nicolay, A. Tomasi, B. Niesen, S. D. Wolf, and C. Ballif, “22.5% efficient silicon heterojunction solar cell with molybdenum oxide hole collector,” Applied Physics Letters, Vol. 107, p. 081601, 2015. [52] R. Singh, R. Sivakumar, S. K. Srivastavad, and T. Som, “Growth angle-dependent tunable work function and optoelectronic properties of MoOx thin films,” Applied Surface Science, Vol. 507, p. 144958, 2020. [53] L. G. Gerling, S. Mahato, A. M. Vilches, G. Masmitja, P. Ortega, C. Voz, R. Alcubilla, and J. Puigdollers, “Transition metal oxides as hole-selective contacts in silicon heterojunctions solar cells,” Solar Energy Materials & Solar Cells, Vol. 145, p. 109, 2016. [54] S. Cao, J. Li, J. Zhang, Y. Lin, L. Lu, J. Wang, M. Yin, L. Yang, X. Chen, and D. Li, “Stable MoOx-based heterocontacts for p-type crystalline silicon solar cells achieving 20% efficiency,” Advanced Functional Materials, Vol. 30, p. 2004367, 2020. [55] L. Neusel, M. Bivour, and M. Hermle, “Selectivity issues of MoOx based hole contacts,” Energy Procedia, Vol. 124, p. 425, 2017. [56] I. Irfan, and Y. Gao, “Effects of exposure and air annealing on MoOx thin films,” Journal of Photonics for Energy, Vol. 2, p. 021213, 2012. [57] S. Cao, J. Li, Y. Lin, T. Pan, G. Du, J. Zhang, L. Yang, X. Chen, L. Lu, N. Min, M. Yin, and D. Li, “Interfacial behavior and stability analysis of p-type crystalline silicon solar cells based on hole-selective MoOx/metal contacts,” Rapid Research Letters Solar, Vol. 3, p. 1900274, 2019. [58] M. T. Greiner, L. Chai, M. G. Helander, W. M. Tang, and Z. H. Lu, “Transition metal oxide work functions: the influence of cation oxidation state and oxygen vacancies,” Advanced Functional Materials, Vol. 22, p. 4557, 2012. [59] S. Chambon, L. Derue, M. Lahaye, B. Pavageau, L. Hirsch, and G. Wantz, “MoO3 thickness, thermal annealing and solvent annealing effects on inverted and direct polymer photovoltaic solar cells,” Materials, Vol. 5, p. 2521, 2012. [60] H. Han, N. D. Theodore, and T. L. Alford, “Improved conductivity and mechanism of carrier transport in zinc oxide with embedded silver layer,” Journal of Applied Physics, Vol. 103, p.013708, 2008. [61] D. A. Kudryashov, A. A. Maksimova, A. I. Baranov, A. V. Uvarov, I. A. Morozov, and A. S. Gudovskikh, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Conference Series, Vol. 1695, p. 012084, 2020. [62] K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Kanematsu, H. Uzu, and K. Yamamoto, “Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%,” Nature Energy, Vol. 2, p. 17032, 2017. [63] A. A. Maksimova, A. I. Baranov, D. A. Kudryashov, and A. S. Gudovskikh, “Investigation of the temperature dependences of the I-V characteristics of p-Si/MoOx selective contacts,” Journal of Physics: Conference Series, Vol. 1697, p. 012169, 2020. [64] K. Mallem, S. Kim, S. Chowdary, S. Kim, J. Park, J. Kim, S. Dutta, M. Ju, Y. Kim, Y. H. Cho, E. C. Cho, and J. Yi, “Influence of molybdenum oxide thickness, electronic structure, and work function on the performance of hole selective silicon heterojunction solar cells, ” IEEE Xplore Active-Matrix Flatpanel Displays and Devices, p. 1897609, 2019. [65] M. T. Greiner, M. G. Helander, W. M. Tang, Z. B. Wang, Jacky Qiu, and Z. H. Lu, “Universal energy-level alignment of molecules on metal oxides,” Nature Materials, Vol. 11, p. 76, 2012. [66] S. Tokito, K. Noda, and Y. Taga, “Metal oxides as a hole-injecting layer for an organic electroluminescent device,” Applied Physics, Vol. 29, p. 2750, 1996. [67] C. Battaglia, S. M. d. Nicolas, S. D. Wolf, X. Yin, M. Zheng, C. Ballif, and Ali Javey, “Silicon heterojunction solar cell with passivated hole selective MoOx contact,” Applied Physics Letters, Vol. 104, p. 113902, 2014. [68] J. D. Zhao, “Effects of indium tin oxide on photovoltaic characteristics of monocrystalline silicon solar cells with molybdenum oxides as hole selective contact layers and Al back surface field,” National Formosa University Master’s Thesis, p.39, 2022.
|