[1]H. Hülako and O. Yakut, “Control of Three-Axis Manipulator Placed on Heavy-Duty Pentapod Robot,” Simulation Modelling Practice and Theory, vol. 108, 2021/4.
[2]J. Narayan, S. Mishra, G. Jaiswal, and S. K. Dwivedy, “Novel design and kinematic analysis of a 5-DOFs robotic arm with three-fingered gripper for physical therapy,” Materials Today: Proceedings, vol. 28, part 4, pp. 21212132, 2020.
[3]I. M. Loutfi, A. H. B. Boutchouang, A. Melingui, O. Lakhal, F. B. Motto, and R. Merzouki, “Learning-Based Approaches for Forward Kinematic Modeling of Continuum Manipulators,” IFAC-PapersOnLine, vol 53, issue 2, pp. 98999904, 2020.
[4]G. Foresi, A. Freddi, V. Kyrki, A. Monteriù, R. Muthusamy, D. Ortenzi, and D. P. Pagnotta, “An Avoidance Control Strategy for Joint-Position Limits of Dual-Arm Robots,” IFAC-PapersOnLine, vol. 50, issue 1, pp. 10561061, 2017/7.
[5]M. Kameduła, N. Kashiri, and N. G. Tsagarakis, “Wheeled motion kinematics and control of a hybrid mobility CENTAURO robot,” Robotics and Autonomous Systems, vol. 128, p.103482, 2020/6.
[6]陳宇叡,具自動分類與磨耗識別之刀具量測系統,國立高雄科技大學電機工程研究所碩士論文,2018.[7]J. Yu, X. Cheng, L. Lu, and B. Wu, “A machine vision method for measurement of machining tool wear,” Measurement, vol. 182, p.109683, 2021/5.
[8]K. M. Fong, X. Wang, S. Kamaruddin, and M. Z. Ismadi, “Investigation on universal tool wear measurement technique using image-based cross-correlation analysis,” Measurement, vol. 169, p.108489, 2021/2.
[9]L. Móricz, Z. J. Viharos, A. Németh, A. Szépligeti, and M. Büki, “Off-line geometrical and microscopic & on-line vibration based cutting tool wear analysis for micro-milling of ceramics,” Measurement, vol. 163, p.108025, 2020/10.
[10]P. J. Bagga, M. A. Makhesana, K. Patel, and K. M. Patel, “Tool wear monitoring in turning using image processing techniques,” Materials Today: Proceedings, vol. 44, part1, pp.771775, 2021.
[11]Z. You, H. Gao, L. Guo, Y. Liu, and J. Li, “On-line milling cutter wear monitoring in a wide field-of-view camera,” Wear, vol.460461, p.203479, 2020/11.
[12]J. Zhou and J. Yu, “Chisel edge wear measurement of high-speed steel twist drills based on machine vision,” Computers in Industry, vol.128, p.103436, 2021/5.
[13]Y. Dai and K. Zhu, “A machine vision system for micro-milling tool condition monitoring,” Precision Engineering, vol.52, pp.183191, 2018/4.
[14]E. Liu, R. Wang, Y. Zhang, and W. An, “Tool wear analysis of cutting Ti-5553 with uncoated carbide tool under liquid nitrogen cooling condition using tool wear maps,” Journal of Manufacturing Processes, vol.68, part A, pp.877887, 2021/5.
[15]M. S. I. Chowdhury, B. Bose, K. Yamamoto, L. S. Shuster, J. Paiva, G. S. Fox-Rabinovich, and S. C. Veldhuis, “Wear performance investigation of PVD coated and uncoated carbide tools during high-speed machining of TiAl6V4 aerospace alloy,” Wear, vol.446447, p.203168, 2020/4.
[16]林唯修,六軸機械手臂之研製與位置控制,國立台灣科技大學高分子工程系碩士論文,2009.[17]FCN的學習及理解,CSDN, moonuke
https://blog.csdn.net/qq_36269513/article/details/80420363
[18]Fully Convolutional Networks,TJ Machine Learning Club, Nikhil Sardana
,https://tjmachinelearning.com/lectures/1718/fcn/
[19]What is Transposed Convolutional Layer? Explained through animated gifs and python code, Towards Data Science, Aqeel Anwar
https://towardsdatascience.com/what-is-transposed-convolutional-layer-40e5e6e31c11
[20]李昕鴻,開發一刀具三維磨耗之智慧檢測系統,國立高雄科技大學電機工程系智慧自動化系統碩士論文,2020[21]T. Bergs, C. Holst, and P. Gupta, T. Augspurger, “Digital image processing with deep learning for automated cutting tool wear detection,” Procedia Manufacturing, vol. 48, pp.947958, 2020.
[22]T. Mikolajczyk, K. Nowicki, A. Klodowski, and D. Yu Pimenov, “Neural network approach for automatic image analysis of cutting edge wear,” Mechanical Systems and Signal Processing, vol. 88, pp. 100110, 2017/5.
[23]T. Mikolajczyk, K. Nowicki, A. Klodowski, and D. Yu Pimenov, “Predicting tool life in turning operations using neural networks and image processing,” Mechanical Systems and Signal Processing, vol. 104, pp. 503513, 2018/5.
[24]D. M. D’Addona, A. M. M. S. Ullah, and D. Matarazzo, “Tool-wear prediction and pattern-recognition using artificial neural network and DNA-based computing,” Journal of Intelligent Manufacturing, vol. 28, pp. 12851301, 2017.
[25]M.T. Garcia-Ordas, E. Alegre, V. Gonzalez-Castro, and R. Alaiz-Rodriguez, “A computer vision approach to analyze and classify tool wear level in milling processes using shape descriptors and machine learning techniques,” The International Journal of Advanced Manufacturing Technology, vol. 90, pp. 19471961, 2017.
[26]X. Wu, Y. Liu, X. Zhou, and A. Mou, “Automatic Identification of Tool Wear Based on Convolutional Neural Network in Face Milling Process,” Sensors (Basel), vol. 19, no. 18, 2019/9.
[27]模糊圖像檢测-無参考图像的清晰度評價,知乎, FUNNY AI
https://zhuanlan.zhihu.com/p/97024018