[1]D. L. Schodek, P. Ferreira, and M. F. Ashby, “Nanomaterials, nanotrchnologies and design: an introduction for engineers and architects,”.Butterworth- Heinemann.(2009)
[2]P. Couvreur , C. Vauthier “Nanotechnology: intelligent design to treat complex disease” Pharmaceutical Research. 23.1417-1450.(2006).
[3]J. Guo , J. Zhang , M. Zhu , D. Ju , H. Xu , B. Cao. “High-performance gas sensor based on ZnO nanowires functionalized by Au nanoparticles” Sensors and Actuators B: Chemical. Volume 199, 339-345(2014)
[4]P. H. Wagh , D. D. Pagar. “Investigation of mechanical and tribological behavior of composite material filled with black epoxy resin and aluminium tri-hydroxide using reinforcement of glass fiber” AIP Conference Proceedings 2018, 020025 (2018)
[5]L. Zhang , T. J. Webster. “Nanotechnology and nanomaterials: Promises for improved tissue regeneration”Nanotoday Volume 4, Issue 1, 66-80(2009)
[6]魏毓呈. “準連續法分析粗糙金屬表面之壓印與切削特性”機械工程系碩士班,國立高雄科技大學(2020)[7]McHenry, Charles (編). The New Encyclopedia Britannica 3 15. Chicago: Encyclopedia Britannica, Inc. 1992: 612. ISBN 978-0-85229-553-3.(維基)
[8]E. B. Tadmor, M. Ortiz and R. Phillips.“Quasicontinuum analysis of defects in solids” Philosophical Magazine A, 73, 1529–1563 (1996).
[9]E. B. Tadmor, R. Phillips and M. Ortiz“Mixed Atomistic and Continuum Models of Deformation in Solids” Langmuir, 12, 4529–4534 (1996).
[10]V. B. Shenoy, R. Miller, E. B. Tadmor, D. Rodney, R. Phillips and M. Ortiz“An adaptive finite element approach to atomic-scale mechanics — the quasicontinuum method” Journal of the Mechanics and Physics of Solids, 47, 611–642 (1999).
[11]E. B. Tadmor, R. Miller, R. Phillips and M. Ortiz“Nanoindentation and incipient plasticity” Journal of Materials Research, 14, 2233–2250 (1999).
[12]Y. Hangai and N. Yoshikawa“Quasicontinuum models for interface multiscale model” Key Engineering Materials, 261-263, 729–734 Part 1 and 2 (2004).
[13]F. Sansoz and J. F. Molinari“Mechanical behavior of Sigma tilt grain boundaries in nanoscale Cu and Al: A quasicontinuum study” Acta Materialia, 53, 1931–1944 (2005).
[14]D. H. Warner, F. Sansoz and J. F. Molinari“Atomistic based continuum investigation of plastic deformation in nanocrystalline copper” International Journal of Plasticity, 22, 754–774 (2006).
[15]X. Z. Sun, S. J. Chen, K. Cheng, D. H. Hu and W. J. Chu“Multiscale simulation on nanometric cutting of single crystal copper” Proceedings of the Institution of Mechanical Engineers Part B-Journal of Enginee, 220, 1217–1222 (2006).
[16]J. Jin, S. A. Shivlin and Z. X. Guo“Multiscale simulation of onset plasticity during nanoindentation of Al (001) surface” Acta Materialia, 56, 4358–4368 (2008).
[17]W. G. Jiang, J. J. Su and X. Q. Feng“Effect of surface roughness on nanoindentation test of thin films” Engineering Fracture Mechanics, 75, 4965–4972 (2008).
[18]X. Zhao, J. H. Li, S. Q. Wang and C. B. Zhang“Quasicontinuum method simulation of the initial plastic deformation of single crystal Cu in nanoindentation” Acta Metallurgica Sinica, 44, 1455–1460 (2008).
[19]H. T. Wang, Z. D. Qin, Y. S. Ni and W. Zhang“Quasicontinuum simulation of indentation on FCC metals” Transactions of Nonferrous Metals Society of China, 18, 1164–1171 (2008).
[20]J. W. Li, Y. S. Ni, Y. H. Lin, C. Luo and W. G. Jiang“Multiscale simulation of nanoindentation on Al thin film” Acta Metallurgica Sinica, 45, 129–136 (2009).
[21]J. W. Li, Y. S. Ni, H. S. Wang and J. F. Mei“Effects of Crystalline Anisotropy and Indenter Size on Nanoindentation by Multiscale Simulation” Nanoscale Research Letters, 5, 420–432 (2010).
[22]M. Dobson, M. Luskin and C. Ortner“Iterative methods for the force-based quasicontinuum approximation: Analysis of a 1D model problem” Computer Methods in Applied Mechanics and Engineering, 200, 2697–2709 (2011).
[23]H. B. Lu, Y. S. Ni, J. F. Mei, J. W. Li and H. S. Wang“Anisotropic plastic deformation beneath surface step during nanoindentation of FCC Al by multiscale analysis” Computational Materials Science, 58, 192–200 (2012).
[24]Y. F. Shao, X. Zhao, J. H. Li and S. Q. Wang“Multiscale simulations on the reversible plasticity of Al (001) surface under a nano-sized indenter” Computational Materials Science, 67, 346–352 (2013).
[25]C. C. Fang and X. J. Yang“Study of nanocontact and incipient nanoscratch process using the quasicontinuum method” Materials Science and Engineering A, 600, 221–230 (2014).
[26]D. Tang, Y. F. Shao, J. H. Li, X. Zhao and Y. Qi “Indenter size effect on the reversible incipient plasticity of Al (001) surface: Quasicontinuum study” Chinese Physics B, 24, 086805 (2015).
[27]A. B. Zhu, D. Y. He, R. J. He and C. Zou “Nanoindentation simulation on single crystal copper by quasi-continuum method” Materials Science and Engineering A, 674, 76–81 (2016).
[28]S. Huang and C. Zhou “Modeling and simulation of nanoindentation” JOM, 69, 2256–2263 (2017).
[29]Z. Zang, Y. Ni, J. Zhang, C. Wang, K. Jiang and X. Ren“Multiscale Simulation of Surface Defects Influence Nanoindentation by a Quasi-Continuum Method” Crystals, 8, 291 (2018).
[30]H. Moslemzadeh, O. Alizadeh and S. Mohammadi “Quasicontinuum multiscale modeling of the effect of rough surface on nanoindentation behavior” Meccanica, 54, 411–427 (2019).
[31]Z. Zhang, C. Wang, X. Hu and Y. Ni “Shape Effect of Surface Defects on Nanohardness by Quasicontinuum Method” Micromachines, 11, 909 (2020).
[32]Fan, Andy, A. Rahman, and R. Reif. "Copper wafer bonding." Electrochemical and Solid-State Letters: 534. (1999).
[33]A.S Zuruzi, H. Li, Gdong “Effects of surface roughness on the diffusion bonding of Al alloy 6061 in air” Materials Science and Engineering: A, Volume 270, Issue 2, 244-248 (1999)
[34]T. H. Kim, M. M. R. Howlader, T. Itoh, and T. Suga “Room temperature Cu–Cu direct bonding using surface activated bonding method” Journal of Vacuum Science & Technology A 21, 449 (2003)
[35]Radu, Ionut, et al. "Recent Developments of Cu-Cu non-thermo compression bonding for wafer-to-wafer 3D stacking." 2010 IEEE International 3D Systems Integration Conference (3DIC). (2010).
[36]Y. S. Tang, Y. J. Chang, K. N. Chen. “Wafer-level Cu–Cu bonding technology” Microelectronics Reliability, Volume 52, Issue 2, 312-320,(2012)
[37]T. Plach, K. Hingerl, S. Tollabimazraehno, G. Hesser, V. Dragoi, and M. Wimplinger "Mechanisms for room temperature direct wafer bonding." Journal of Applied Physics 113.9: 094905. (2013).
[38]M. Sadaka, I. Radu, C. L. Blanchard, L. D. Cioccio "Smart stacking™ and smart Cut™ technologies for wafer level 3D integration." Proceedings of 2013 International Conference on IC Design & Technology (ICICDT).(2013).
[39]T. Matthias, T. Uhrmann, V. Dragoi, P. Lindner "Opportunities in 3D substrate bonding." 2013 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S). (2013).
[40]Panigrahy, A. Kumar, and K. N. Chen. "Low temperature Cu–Cu bonding technology in three-dimensional integration: An extensive review." Journal of Electronic packaging 140.1 (2018).
[41]J. Li, Q. Liang, T. S. J. Fan, B. Gong, C. Feng, J. Fan, G. Liao, Z. Tanga. "Design of Cu nanoaggregates composed of ultra-small Cu nanoparticles for Cu-Cu thermocompression bonding." Journal of Alloys and Compounds 772: 793-800. (2019).
[42]T. Suga, R. He, G. Vakanas and A. L. Manna "Direct Cu to Cu bonding and alternative bonding techniques in 3D packaging." 3D Microelectronic Packaging. Springer, Singapore, 201-231. (2021).
[43]蘇玟丞. “準連續法研究異質介面之機械與變形特性”機械工程系碩士班,國立高雄應用科技大學(2019)[44]F. Sansoz, J. F.Molinari. “Mechanical behavior of Σ tilt grain boundaries in nanoscale Cu and Al: A quasicontinuum study” Acta Materialia Volume 53, Issue 7, 1931-1944(2005)
[45]Y. Liu, D. Bufford, H. Wang, C. Sun, X. Zhang. “Mechanical properties of highly textured Cu/Ni multilayers” Acta Materialia Volume 59, Issue 5, 1924-1933(2011)
[46]Q. Li, L. Jiang. “A multiscale virtual element method for elliptic problems in heterogeneous porous media” Journal of Computational Physics Volume 388, 394-415(2019)
[47]H. Zhao, J. Liu, X. Yin, Yi Wang, D. Huang. “A multiscale prediction model and simulation for autogenous shrinkage deformation of early-age cementitious materials” Construction and Building Materials Volume 215, 482-493(2019)
[48]Q. Huang, Z. Kuang, H. Hu, M. P. Ferry. “Multiscale analysis of membrane instability by using the Arlequin method” International Journal of Solids and Structures Volume 162, 60-75(2019)
[49]H. B. Dhia, O. Jamond. “On the use of XFEM within the Arlequin framework for the simulation of crack propagation” Computer Methods in Applied Mechanics and Engineering Volume 199, Issues 21–22, 1403-1414(2010)
[50]Z. Yang, Y. Sun, Y. Liu, Q. Ma. “A second-order multiscale approach for viscoelastic analysis of statistically inhomogeneous materials” Composite Structures Volume 220, 550-565(2019)
[51]林英志. “多尺度法模擬金屬奈米線接合與機械效應”機械工程系碩士班,國立高雄應用科技大學(2017)[52]陳重熺. “準連續法分析鋁之研磨與壓印特性”機械工程系碩士班,國立高雄應用科技大學(2017)[53]O. C. Zienkiewicz, D. W. Kelly, P. Bettess. “The coupling of the finite element method and boundary solution procedures” Volume11, Issue2(1977)
[54]W. E, P. Ming. “Cauchy–Born Rule and the Stability of Crystalline Solids: Static Problems” Archive for Rational Mechanics and Analysis volume 183, 241–297 (2007)
[55]M. S. Daw, M. I. Baskes. “Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals” Phys. Rev. B 29, 6443(1984)
[56]R. A. Johnson. “Alloy models with the embedded-atom method” Phys. Rev. B 39, 12554(1989)
[57]Z. S. Basinski, M. S. Duesbery, Roger Taylor. “Influence of Shear Stress on Screw Dislocations in a Model Sodium Lattice” Canadian Journal of Physics(1971)
[58]R. E. Miller, E.B. Tadmor. “The Quasicontinuum Method: Overview, applications and current directions” Journal of Computer-Aided Materials Design volume 9, 203–239 (2002)
[59]R. Miller, E. B. Tadmor, R. Phillips, M Ortiz. “Quasicontinuum simulation of fracture at the atomic scale” Modelling and Simulation in Materials Science and Engineering, Volume 6, Number 5(1998)
[60]O. C. Zienkiewicz, J. Z. Zhu. “A simple error estimator and adaptive procedure for practical engineerng analysis” Volume24, Issue2 337-357(1987)
[61]E. S.Gadelmawla, M. M. Koura, T. M. A. Maksoud, I. M. .Elewa, H. H. Soliman. “Roughness parameters” Journal of Materials Processing Technology Volume 123, Issue 1, 133-145(2002)
[62]C. B. Cui, H. G. Beom. “Fracture of nanoscale Cu/Ag bimaterials with an interface crack” Computational Materials Science Volume 118, 133-138(2016)
[63]V. Yamakov, E. Saether, D. R. Phillips, E. H. Glaessgen. “Molecular-dynamics simulation-based cohesive zone representation of intergranular fracture processes in aluminum” Journal of the Mechanics and Physics of Solids Volume 54, Issue 9, 1899-1928(2006)
[64]Y. Zhang, S. Jiang, X. Zhu, Y. Zhao. “A molecular dynamics study of intercrystalline crack propagation in nano-nickel bicrystal films with (0 1 0) twist boundary” Engineering Fracture Mechanics Volume 168, Part A, 147-159(2016)
[65]A. Neogi, N. Mitra. “Shock induced deformation response of single crystal copper: Effect of crystallographic orientation” Computational Materials Science Volume 135, 141-151(2017)
[66]V. Dupont, F. Sansoz. “Quasicontinuum study of incipient plasticity under nanoscale contact in nanocrystalline aluminum” Acta Materialia Volume 56, Issue 20, 6013-6026(2008)
[67]J. P. Wang, Z. F. Yue, Z. X. Wen, D. X. Zhang, C. Y. Liu. “Orientation effects on the tensile properties of single crystal nickel with nanovoid: Atomistic simulation” Computational Materials Science Volume 132, 116-124(2017)
[68]J. Jin, S. A. Shevlin, Z. X. Guo. “Multiscale simulation of onset plasticity during nanoindentation of Al (0 0 1) surface” Acta Materialia Volume 56, Issue 16, 4358-4368(2008)