|
[1]S. Zhang, X. Xu, T. Lin, P. He, Recent advances in nano-materials for packaging of electronic devices, J. Mater. Sci., 30 (2019) 13855–13868. [2]N.G. Orji , M. Badaroglu, B. M. Barnes , C. Beitia, B.D. Bunday, U. Celano, R.J. Kline, M. Neisser, Y. Obeng, A.E. Vladar., Metrology for the next generation of semiconductor devices, Nat. Electron., 1(10) (2018) 532–547. [3]K. Croes, Ch. Adelmann, C.J. Wilson, H. Zahedmanesh, O. Varela Pedreira, C. Wu, A. Leśniewska, H. Oprins, S. Beyne, I. Ciofi, D. Kocaay, M. Stucchi, Zs. Tőkei., Interconnect metals beyond copper: reliability challenges and opportunities, IEEE (IEDM), 18(114) (2018) 5.3.1-5.3.4. [4]K. Venkatraman, Y. Dordi, R. Akolkar., Electrochemical Atomic Layer Deposition of Cobalt Enabled by the Surface-Limited Redox Replacement of Underpotentially Deposited Zinc, J. Electrochem. Soc., 164(2) (2017) 104-109. [5]H. Aboulfadl, F. Mücklich, Atomic-scale characterization of diffusion kinetics in Ru/Al multilayer thin films, Materials Letters, 254 (2019) 344-347. [6]J. Li, H. S. Lu, Y.W. Wang, X. P. Qu, Sputtered Ru–Ti, Ru–N and Ru–Ti–N films as Cu diffusion barrier, Microelectronic Engineering, 88 (2011) 635–640. [7]E. Abualgassem, M. Maarouf, A. Bake, D. Cortie, K. Alam, M. B. Haider, Optical and magnetic properties of cobalt doped TiN thin films grown by RF/DC magnetron sputtering, J. Magn. Magn. Mater., 550 (2022) 169023. [8]J. Ahn, T. Kim, Y. Kim, and E. K. Kim, Resistive switching behaviors of cobalt oxide films with structural change by post-thermal annealing, Materials Science in Semiconductor Processing, 156 (2023) 107295. [9]R.F. Lopes, D.R. Saldanha, F. Mesquita, A.M.H. de Andrade, L.S. Dorneles, M.A. Tumelero, P. Pureur, Spin textures and magnetotransport properties in cobalt/ruthenium and cobalt/palladium bilayers, J. Magn. Magn. Mater., 519 (2021) 167447. [10] K. C. Wu, J. Y. Tseng, W. J. Chen, Electroplated Ru and RuCo films as a copper diffusion barrier, Applied Surface Science, 516 (2020) 146139. [11] S. Premlatha, M. Chandrasekaran, G.N.K.Ramesh Bapu, Preparation of Cobalt-RuO2 nanocomposite modified electrode for highly sensitive and selective determination of hydroxylamine, Sensors and Actuators B: Chemical, 252 (2017) 375-384. [12] J. H. Moon , S. Kim , T. Kim , Y. S. Jeon , Y. Kim , J. P. Ahn , Y. K. Kim, Electrical resistivity evolution in electrodeposited Ru and Ru-Co nanowires, J. of Mater. Sci. & Tech., 105 (2022) 17-25. [13] K. Barmak, X. Liu, A. Darbal, N. T. Nuher, D. Choi, T. Sun, A. P. Warren, K. R. Coffey, M. F. Toney, On twin density and resistivity of nanometric Cu thin films, J. Appl. Phys., 120 (2016) 065106. [14] L. Wang, Z.H. Cao, K. Hu, Q.W. She, X.K. Meng, Improved diffusion barrier performance of Ru/TaN bilayer by N effusion in TaN under-layer, Mater. Chem. Phys. 135(2-3) (2012) 806-809. [15] S.F. Chena, S.J. Wang, T.H. Yang, Z.D. Yang, H.Y. Bor, C.N. Wei, Effect of nitrogen flow rate on TaN diffusion barrier layer deposited between a Cu layer and a Si-based substrate, Ceram. Int. 43(15) (2017) 12505-12510. [16] Y.M. Zhou M.Z. He, Z. Xie, Diffusion barrier performance of novel Ti/TaN double layers for Cu metallization, Appl. Surf. Sci. 315 (2014) 353-359. [17] L. Chen, N. Magtoto, B. Ekstrom, J. Kelber, Effect of surface impurities on the Cu/Ta interface, Thin Solid Films 376(1-2) (2000) 115-123. [18] S. Li, H.S. Park, M.H. Liang, T.H. Yip, O. Prabhakar, Effects of Cu diffusion behaviors on electronic property of Cu/Ta/SiO2/Si structure, Thin Solid Films 462-463 (2004) 192-196. [19] J.S. Fang, J.H. Chen, G.S. Chen, Y.L. Cheng, T.S. Chin, Direct, sequential growth of copper film on TaN/Ta barrier substrates by alternation of Pb-UPD and Cu-SLRR, Electrochim. Acta. 206 (2016) 45-51. [20] M. Zhou, Y. Zhao, W. Huang, B.M. Wang, G.P. Ru, Y.L. Jiang, R. Liu, X.P. Qu, Cu contact on NiSi substrate with a Ta/TaN barrier stack, Microelectro. Eng. 85(10) (2008) 2028-2031. [21] International Roadmap For Devices and System : 2022, IEEE (IRTS). [22] K. Jeong, J. Lee, I. Byun, M. jun. Seong, J. Park, H. W. Kim, M. J. Kim, J. H. Kim, Jaegab Lee, Synthesis of highly conductive cobalt thin films by LCVD at atmospheric pressure, Mater Sci Semicond Process, 68 (2017) 245–251. [23] O. Varela Pedreira, K. Croes, A. Lesniewska, C. Wu, M. H. van der Veen, J. de Messemaeker, K. Vandersmissen, N. Jourdan, L.G. Wen, C. Adelmann, B. Briggs, V. Vega Gonzalez, J. Bömmels, Zs. Tokei, Reliability Study on Cobalt and Ruthenium as Alternative Metals for Advanced Interconnects, 2017 IEEE IRPS, (2017) 6B-2.1-6B-2.8. [24] E. Milosevic, S. Kerdsongpanya, D. Gall, The Resistivity Size Effect in Epitaxial Ru(0001) and Co(0001) Layers, 2018 IEEE Nanotechnology Symp. (ANTS), (2018) pp. 1-5. [25] J.-W. Lim, M. Isshiki, Electrical resistivity of Cu films deposited by ion beam deposition: Effects of grain size, impurities, and morphological defect, J. Appl. Phys., 99 (2006) 094909. [26] J.M. Purswani, D. Gall, Electron scattering at single crystal Cu surfaces, Thin Solid Films, 516 (2007) 465–469. [27] E. Yoo, J. H. Moon, Y. S. Jeon, Y. Kim, J. P. Ahn, Y. K. Kim, Electrical resistivity and microstructural evolution of electrodeposited Co and Co-W nanowires, Mater Charact, 166 (2020) 110451. [28] K. Venkatraman, Y. Dordi, R. Akolkar, Electrochemical Atomic Layer Deposition of Cobalt Enabled by the Surface-Limited Redox Replacement of Underpotentially Deposited Zinc, J. Electrochem. Soc., 164 (2) (2017) D104-D109. [29] S. Dutta, S. Beyne, A. Gupta, S. Kundu, S.V. Elshocht, H. Bender, G. Jamieson, W. Vandervorst, J. Bömmels, C.J. Wilson, Z.T. okei, Christoph Adelmann, Sub-100 nm2 Cobalt Interconnects, IEEE. Electron Device Lett. 39(5) (2018) 731-734. [30] https://reurl.cc/p6K3Qd [31] R. Saeki, T. Ohgai, Determination of cathode current efficiency forelectrodeposition of ferromagnetic cobalt nanowire arrays innanochannels with extremely large aspect ratio, Results Phys., 15 (2019) 102658. [32] Masao Kamiko, Jae-Geun Ha, “Influences of ultra-thin Ti seed layers on the dewetting phenomenon of Au films deposited on Si oxide substrates”, Journal, 99(2018) 320-329. [33] H. Xia, W. R. Knudsen, and P. L. Bergstrom, Fabrication of C54-TiSi2 Thin Films Using Cathodic Arc Deposition and Rapid Thermal Annealing, MRS Online Proceedings Library, 1052 (2007) 629. [34] B. Li, T. D. Sullivan, T. C. Lee, D. Badami, Reliability challenges for copper interconnects, Microelectron Reliab, 44 (2004) 365–380. [35] F. Messner, Material substitution and path dependence: empirical evidence on the substitution of copper for aluminum, Ecol Econ, 42 (2002) 259–271. [36] C. J. Liu, J. S. Chen, Influence of Zr additives on the microstructure and oxidation resistance of Cu(Zr) thin films, Mater. Res. Soc., 20 (2005) 96-503. [37] A. S. Kale, W. Nemeth, C. L. Perkins, D. Young, A. Marshall, K. Florent, S. K. Kurinec, P. Stradins, S. Agarwal, Thermal Stability of Copper–Nickel and Copper–Nickel Silicide Contacts for Crystalline Silicon, ACS Appl. Energy Mater., 1, 6, (2018) 2841–2848. [38] A. E. Kaloyeros, E. Eisenbraun, Ultrathin diffusion barriers/liners for gagascale copper metallization, Annu. Rev. Mater. Sci.; Palo Alto, 30 (2000) 363. [39] M. H. Tsai, J. W. Yeh, J. Y. Gan, Diffusion barrier properties of AlMoNbSiTaTiVZr high-entropy alloy layer between copper and silicon, Thin Solid Films, 516 (2008) 5527 – 5530. [40] K. E. Elers, V. Saanila, P. J. Soininen, W.-M. Li, J. T. Kostamo, S. Haukka, J. Juhanoja, W. F. A. Besling, Diffusion Barrier Deposition on a Copper Surface by Atomic Layer Deposition, Chem. Vap. Deposition, 8, 4 (2002) 149-153. [41] M.A. Nicolet, Diffusion barriers in thin films, Thin Solid Films 52(3) (1978) 415-443. [42] M. Stavrev, D. Fischer, Behavior of thin Ta-based films in the Cu/barrier/Si system, J. Vac. Sci. Technol. A, 17 (1999) 993. [43] F. Cao, G. h. Wu, L. t. Jiang, Evaluation of Cu(V) self-forming barrier for Cu metallization, J. Alloys Compd., 657 (2016) 483-486. [44] J. Borja, Joel. L. Plawsky, W. N. Gill, H. Bakhru, M. He, T. M. Lu, Penetration of Copper-Manganese Self-Forming Barrier into SiO2 Pore-Sealed SiCOH during Deposition, ECS J Solid State Sci Technol, 2 (2013) 9. [45] M. Franz, R. Ecke, C. Kaufmann, J. Kriz, S. E. Schulz, Characterisation of the barrier formation process of self-forming barriers with CuMn, CuTi and CuZr alloys, Microelectron Eng, 156 (2016) 65-69 [46] Department of Chemical Engineering and Biotechnology, University of Cambridge, Teaching Notes: Electrochemistry Fundamentals, retrieved from http://www.ceb.cam.ac.uk/research/groups/rg-eme/teaching notes. [47] D. A. Jones, Principles And Prevention of Corrosion, Prentice Hall, 2nd ed. (1997). [48] B. Y. Chang, S. M. Park, Electrochemical Impedance Spectroscopy, Annu Rev Anal Chem, 3.1 (2010) 207. [49] F. Ciucci, Modeling electrochemical impedance spectroscopy, Curr Opin Electrochem, 13 (2019) 132-139. [50] J. M. Fisher, L. E. A. Berlouis, B. N. Rospendowski, P. J. Hall, M. G. Astles, In situ ellipsometry studies of electrodeposited cadmium telluride films on cadmium mercury telluride”, Semicond. Sci. Technol., 8 (1993) 1459-1464. [51] H. Soonmin, A review of nanostructured thin films for gas sensing and corrosion protection, Mediterranean Journal of Chemistry, 19 (2018). [52] A. C. Frank, and P. T. A. Sumodjo, Electrodeposition of cobalt from citrate containing baths, Electrochim. Acta., 132 (2014) 75-82. [53] L. Oniciu, and L. Muresan, Some fundamental aspects of leveling and brightening in metal electordepostion, J. Appl. Chem., 21 (1991) 565-574. [54] P. Altimari, P. C. Schiavi, A. Rubino, and F. Pagnanelli, Electrodeposition of cobalt nanoparticles:An analysis of the mechanisms behind the deviation from three-dimensional diffusion-control, J. Electroanal. Chem., 851 (2019) 113413-113427. [55] A. J. Bard, and L. R. Faulkner, Electrochemical Methods Fundamentals and Applications 2nd, John Wiley & Sons, Inc., (2001). [56] M. Morisue, Y. Fukunaka, E. Kusaka, R. Ishii, and K. Kuribayashi, Effect of gravitational strength on nucleation phenomena of electrodeposited copper onto a TiN substrate, J. Electroanal. Chem. 559 (2003) 155-163. [57] A.J. Bard, and L.R. Faulkner, Electrochemical Methods Fundamentals and Applications, 2nd, John Wiley & Sons, Inc., (2001). [58] D. Turnbull, and J.C. Fisher, Rate of nucleation in condensed systems, J. Chem. Phys. 17(71) (1949) 71-73. [59] W. Lorenz, Oscillographic overvoltage measurements, Z. Electrochem, 58 (1954) 912-918. [60] M. Fleischmann, and H. R. Thirsk, The potentiostatic study of the growth of deposits on electrodes, Electrochim. Acta., 1(2-3) (1959) 146-160. [61] A. Bewick, M. Fleischmann, and H. R. Thirsk, Kinetics of the electrocrystallization of thin films of calomel, Transactions of the Faraday, 58 (1962) 2200-2216. [62] B. Scharifker, and G. Hills, Theoretical and experimental studies of multiple nucleation, Electrochim. Acta, 28(7) (1983) 879-889. [63] B. J. Hwang, R. Santhanam, and Y. L. Lin, Nucleation and growth mechanism of electroformation of polypyrrole on a heat-treated gold/highly oriented pyrolytic graphite, Electrochim. Acta, 46 (2001) 2843-2853. [64] A. Bewick, M. Fleischmann, H.R. Thirsk, Kinetics of the electrocrystallization of thin films of calomel, J. Trans. Faraday, 58 (1962) 2200-2216. [65] B. Scharifker, and G. Hills, Theoretical and experimental studies of multiple nucleation, Electrochim. Acta, 28(7) (1983) 879-889. [66] B.J. Hwang, R. Santhanam, Y.L. Lin, Nucleation and growth mechanism of electroformation of polypyrrole on a heat-treated gold/highly oriented pyrolytic graphite, Electrochim. Acta, 46 (2001) 2843-2853. [67] G. Gunawardena, G. Hills, I. Montenegro, and B. Scharifker, Electrochemical nucleation:Part I general considerations, J. Electroanal. Chem., 138 (1982) 225-239. [68] D. Grujicic, and B. Pesic, Electrodeposition of copper:the nucleation mechanisms, Electrochim. Acta, 47(18) (2002) 2901-2912. [69] D Grujicic, and B Pesic, Reaction and nucleation mechanisms of copper electrodeposition from ammoniacal solutions on vitreous carbon, Electrochim. Acta, 50(22) (2005) 4426-4443. [70] O. Renault, A Garnier, J Morin, and N Gambacorti, High-resolution XPS spectromicroscopy study of micro-patterned gold-tin surfaces, Appl. Surf. Sci., 258(24) (2012) 10077-10083. [71] M. Gu, L. Huang, F. Z. Yang, S. B. Yao, and S. M. Zhou, Influence of chloride and PEG on electrochemical nucleation of copper, Int. J. Sur. Engineering and Coatings, 80(6) (2002) 183-186. [72] J. B. Hiskey, and Y. Maeda, A study of copper deposition in the presence of Group-15 elements by cyclic voltammetry and Auger-electron spectroscopy, J. Appl. Chem., 33 (2003) 393-401. [73] https://reurl.cc/dDqnd2 [74] https://www.tsri.org.tw/tw/tech/equipment_hsinchu.jsp [75] Y. K. Ko, D. S. Park, B. S. Seo, H. J. Yang, H. J. Shin, J. Y. Kim, J. H. Lee, W. H. Lee, P. J. Reucroft, J. G. Lee, Studies of cobalt thin films deposited by sputtering and MOCVD, Mater. Chem. Phys., 80 (2003) 560-564. [76] J. H. Moon, S. Kim, T. Kim, Y. S. Jeon, Y. Kim, J. P. Ahn, Y. K. Kim, Electrical resistivity evolution in electrodeposited Ru and Ru-Co nanowires, Journal of Materials Science & Technology, 105 (2022) 17-25. [77] H. Y. Tian, Y. Wang, H. L. W. Chan, C. L. Choy, K. S. No, Structural and electrical characteristics of highly textured oxidation-free Ru thin films by DC magnetron sputtering, Journal of Alloys and Compounds, 392 (2005) 231-236. [78] S. Ambrozik, B. Rawlings, N. Vasiljevic, N.Dimitrov, Metal deposition via electroless surface limited redox replacement, Electrochem. Commun., 44 (2014) 19-22. [79] Y. He, C. J. Weststrate, D. Luo, J. W. Niemantsverdriet, K. Wu, J. Xu, Y. Yang, Y.W. Li, X.D. Wen, Carbon monoxide adsorption on cobalt overlayers on a Si(1 1 1) surface studied by STM and XPS, Appl. Surf. Sci., 569 (2021) 151045. [80] A. Sarnecki, P. Adamski, A. Albrecht, A. Komorowska, M. Nadziejko, D. Moszyński, XPS study of cobalt-ceria catalysts for ammonia synthesis – The reduction process, Vacuum, 155 (218) 434-438. [81] A. Kudielka, M. Schmid, B.P. Klein, C. Pietzonka, J. Michael Gottfried, B. Harbrecht, Nanocrystalline cobalt hydroxide oxide: Synthesis and characterization with SQUID, XPS, and NEXAFS, J. Alloys Compd., 824 (2020) 153925. [82] J. Balcerzak, W. Redzynia, J. Tyczkowski, In-situ XPS analysis of oxidized and reduced plasma deposited ruthenium-based thin catalytic films, Appl. Surf. Sci., 426 (2017) 852-855. [83] S. Budi, B. Kurniawan, D.M. Mott, S. Maenosono, A.A. Umar, A. Manaf, Comparative trial of saccharin-added electrolyte for improving the structure of an electrodeposited magnetic FeCoNi thin film, Thin Solid Films, 642 (2017) 51-57. [84] David J. Morgan, Resolving ruthenium: XPS studies of common ruthenium materials, Surf. Interface Anal. 47 (2015) 1072–1079 [85] Y. Lin, Z. Tian, L. Zhang, J. Ma, Z. Jiang , B. J. Deibert, R. Ge, L. Chen, Chromium-ruthenium oxide solid solution electrocatalyst for highly efficient oxygen evolution reaction in acidic media, Nature Communications, 10 (2019) 162. [86] J. Peszke, M. Dulski, A. Nowak, K. Balin, M. Zubko, S. Sułowicz, B. Nowak, Z. Piotrowska-Seget, E. Talik, M. Wojtyniak, A. Mrozek-Wilczkiewicz, K. Malarz, J. Szade, Unique properties of silver and copper silica-based nanocomposites as antimicrobial agents, RSC Adv., 7 (2017) 28092. [87] P. Borowicz, M. Latek, W. Rzodkiewicz, A. Łaszcz, A. Czerwinski, J. Ratajczak, Deep-ultraviolet Raman investigation of silicon oxide: thin film on silicon substrate versus bulk material, Nanosci. Nanotechnol. 3 (2012) 045003. [88] D. D. Tuan, F. C. Chang, P. Y. Chen, E. Kwon, S. You, S. Tong f, K. Yi, A. Lin, Covalent organic polymer derived carbon nanocapsule–supported cobalt as a catalyst for activating monopersulfate to degrade salicylic acid, Journal of Environmental Chemical Engineering, 9 4 (2021) 105377. [89] E. Mwenesongole, A Raman- and XRD study of the crystal chemistry of cobalt blue, University of Pretoria, (2008). [90] D. K. Chlebda, R. J. Jędrzejczyk, P. J. Jodłowski, J. Łojewska, Surface structure of cobalt, palladium, and mixed oxide‐based catalysts and their activity in methane combustion studied by means of micro‐Raman spectroscopy, J Raman Spectrosc. (2017) 1-10. [91] Z. Li1, Y. Yuan, V. Begeza, L. Rebohle, M. Helm, K. Nielsch, S. Prucnal, S. Zhou, On Curie temperature of B20 MnSi flms, nature portfolio, 12 (2022) 16388. [92] D. M. Popovic, V. Milosavljevic, A. Zekic, N. Romcevic, and S. Daniels, Raman scattering analysis of silicon dioxide single crystal treated by direct current plasma discharge, Applied physics letters, 98 (2011) 051503. [93] H. K. Hassan, N. F. Atta, M. M. Hamed, A. Galal and T. Jacob, Ruthenium nanoparticles-modified reduced graphene prepared by a green method for high performance supercapacitor application in neutral electrolyte, RSC Adv., 7 (2017) 11286. [94] Y. Guo, Z. Zhu, Y. Chen, H. He, X. Li, T. Qin, Y. Wang, High-performance supercapacitors of ruthenium-based nanohybrid compounds, Journal of Alloys and Compounds 842 (2020) 155798. [95] S. Tebbakh, L. Mentar, Y. Messaoudi, M. R. Khelladi, H. Belhadj & A. Azizi, Effect of cobalt content on electrodeposition and properties of Co–Ni alloy thin films, Inorganic and Nano-Metal Chemistry, 51:12, 1796-1802. [96] X. Liu, C. Dong, W. Dong, X. Wang, X. Yuan and F. Huang, Co nanoparticles embedded in a 3D CoO matrix for electrocatalytic hydrogen evolution, RSC Adv., 6 (2016) 38515. [97] E. K. Orhorhoro, A. A. Erameh, R. I. Tamuno, Investigation of the Effect of Corrosion Rate on Post Welded Heat Treatment of Medium Carbon Steel in Seawater, J. Appl. Res. Ind. Eng, 9(1) (2022) 59-67. [98] A. Troglia, S. V. Vliet, G. Yetik, I. E. Wakil, J. Momand, B. J. Kooi, R. Bliem, Free-standing nanolayers based on Ru silicide formation on Si(100), Physical review materials, 6 (2022) 043402. [99] R. Jacobs, D. Morgan, J. Booske, Work function and surface stability of tungsten-based thermionic electron emission cathodes, Apl Materials, 5 (2017) 116105. [100]A.D. Jagadale, D.P. Dubal, C.D. Lokhande, Electrochemical behavior of potentiodynamically deposited cobalt oxyhydroxide (CoOOH) thin films for supercapacitor application, Materials Research Bulletin, 47 (2012) 672-676. [101]S. Aloqayli, C.K. Ranaweera, Z. Wang, K. Siam, P.K. Kahol, P. Tripathi, O.N. Srivastava, Bipin Kumar Gupta, S.R. Mishra, Felio Perez, X. Shen, Ram K. Gupta, Nanostructured cobalt oxide and cobalt sulfide for flexible, high performance and durable supercapacitors, Energy Storage Materials, 8 (2017) 68-76. [102]Y. Zhu, D. Cao, N. Liu, D. Cheng, One-step synthesis of atomic Ru doped ultra-thin Co(OH)2 nanosheets for oxygen evolution reaction in different pH values, International Journal of Hydrogen Energy, 46(44)28 (2021) 22832-22841. [103] R. Zou, Y. Wang, M. Hu, Y. Wei, T. Fujita, Analysis of Ruthenium Electrodeposition in the Nitric Acid Medium, J. Phys. Chem. C, (2022) 126, 9, 4329-4337. [104] S. Cimino, E. M. Cepollaro, L. Lisi, S. Fasolin, M. Musiani, L. Vázquez-Gómez, Ru/Ce/Ni Metal Foams as Structured Catalysts for the Methanation of CO2, Catalysts, 11 (2020) 13. [105]M. Frei, C. Köhler, L. Dietel, J. Martin, F. Wiedenmann, R. Zengerle, S. Kerzenmacher, Pulsed Electrodeposition of Highly Porous Pt Alloys for use in Methanol, Formic Acid, and Glucose Fuel Cells, ChemElectroChem, 5 (2018) 1013-1023. [106]M. Strømme, G. A. Niklasson, C. G. Granqvist, Voltammetry on fractals, Solid State Communications, 96 3 (1995) 151-154. [107]J. J. V. Benschoten, J. Y. Lewis, and W. R. Heineman, Cyclic voltammetry experiment, Journal of Chemical Education, 60 9 (1983) 772. [108]D. Kutyła, K. Kołczyk, P. Żabiński, R. Kowalik, A. Kwiecińska, K. Skibinska, Investigation of Ruthenium Thin Layers Electrodeposition Process under Galvanostatic Conditions from Chloride Solutions, Russian Journal of Electrochemistry, 56(3) (2020), 214-221. [109]Rakhymbay G, Burkitbayeva B.D., Argimbaeva A.M., Jumanova R. Kurbatov A.P., Nauryzbayev M.K, Eyraud M., Knauth P., Vacandio F., Mechanistic Study of the Electrochemical Deposition of Indium: Nucleation Mode and Diffusional Limitation, Russian Journal of Electrochemistry, 52 (2016) 99–105. [110]S.P. Mundinamani, M.K. Rabinal, Cyclic Voltammetric Studies on the Role of Electrode, Electrode Surface Modification and Electrolyte Solution of an Electrochemical Cell, Journal of Applied Chemistry, 2278-5736 7 9 (2014) 45-52. [111]Le Wang, Chun Feng, Huiqun Liu, Danqing Yi, Long Jiang, Yaorong Feng, Revealing the role of Ru in improving corrosion resistance of titanium alloys in HCl solution, Heat Treatment and Surface Engineering, 1 (2019) 3-4, 97-108. [112]E. Z. Liu, X. R. Guan, Effect of Ru on corrosion resistance of high Cr content superalloy, Materials and Corrosion, 67 12 (2016) 1269-1273. [113]Q. Liu, H. Liu, J. Xie, W. F. Zhang, Y. M. Zhang, C. Feng, G. S. Li, Y. Yu, S. Y. Song, C. X.Yin, Infuence of Ru on structure and corrosion behavior of passive flm onTi 6Al 4V alloy in oil and gas exploration conditions, Scientifc Reports, 12 (2022) 16586. [114]S. Maeng, L. Axe, T.A. Tyson, P. Cote, Corrosion behaviour of electrodeposited and sputtered Cr coatings and sputtered Ta coatings with α and β phases, Surface & Coatings Technology, 200 (2006) 5767-5777.
|