|
[1] Rüßmann, M., Lorenz, M., Gerbert, P., Waldner, M., Justus, J., Engel, P., & Harnisch, M. (2015). Industry 4.0: The future of productivity and growth in manufacturing industries. Boston Consulting Group, 9(1), 54-89. [2] Dalenogare, L. S., Benitez, G. B., Ayala, N. F., & Frank, A. G. (2018). The expected contribution of Industry 4.0 technologies for industrial performance. International Journal of Production Economics, 204, 383-394. [3] Prihatno, A. T., Nurcahyanto, H., & Jang, Y. M. (2020, August). Smart Factory Based on IoT Platform. In KIC Summer Conf. 2020 (pp. 2-4). [4] Huang, D. C., Lin, C. F., Chen, C. Y., & Sze, J. R. (2018, May). The Internet technology for defect detection system with deep learning method in smart factory. In 2018 4th International Conference on Information Management (ICIM) (pp. 98-102). IEEE. [5] Rojko, A. (2017). Industry 4.0 concept: Background and overview. International Journal of Interactive Mobile Technologies, 11(5). [6] Lasi, H., Fettke, P., Kemper, H.-G., Feld, T., & Hoffmann, M. (2014). Industry 4.0. Business & information systems engineering, 6(4), 239-242. [7] Contreras, J. D., Garcia, J. I., & Pastrana, J. D. (2017). Developing of Industry 4.0 Applications. International Journal of Online Engineering, 13(10). [8] Spoggi, G. (2020). Industry 4.0 and smart manufacturing: potential environmental benefits. The case of China. Università Ca'Foscari Venezia, [9] Xu, L. D., Xu, E. L., & Li, L. (2018). Industry 4.0: state of the art and future trends. International Journal of Production Research, 56(8), 2941-2962. [10] Frank, A. G., Dalenogare, L. S., & Ayala, N. F. (2019). Industry 4.0 technologies: Implementation patterns in manufacturing companies. International Journal of Production Economics, 210, 15-26. [11] Shrouf, F., Ordieres, J., & Miragliotta, G. (2014, December). Smart factories in Industry 4.0: A review of the concept and of energy management approached in production based on the Internet of Things paradigm. In 2014 IEEE international conference on industrial engineering and engineering management (pp. 697-701). IEEE. [12] Madakam, S., Lake, V., Lake, V., & Lake, V. (2015). Internet of Things (IoT): A literature review. Journal of Computer and Communications, 3(05), 164. [13] Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A vision, architectural elements, and future directions. Future generation computer systems, 29(7), 1645-1660. [14] Lee, I., & Lee, K. (2015). The Internet of Things (IoT): Applications, investments, and challenges for enterprises. Business Horizons, 58(4), 431-440. [15] Jung, D., Zhang, Z., & Winslett, M. (2017, April). Vibration analysis for iot enabled predictive maintenance. In 2017 IEEE 33rd International Conference on Data Engineering (ICDE) (pp. 1271-1282). IEEE. [16] Ganga, D., & Ramachandran, V. (2018). IoT-based vibration analytics of electrical machines. IEEE Internet of Things Journal, 5(6), 4538-4549. [17] Gao, S., Zhang, X., Du, C., & Ji, Q. (2019). A multichannel low-power wide-area network with high-accuracy synchronization ability for machine vibration monitoring. IEEE Internet of Things Journal, 6(3), 5040-5047. [18] Khademi, A., Raji, F., & Sadeghi, M. (2019, April). IoT enabled vibration monitoring toward smart maintenance. In 2019 3rd International Conference on Internet of Things and Applications (IoT) (pp. 1-6). IEEE. [19] Verma, A., Goyal, A., Kumara, S., & Kurfess, T. (2021). Edge-cloud computing performance benchmarking for IoT based machinery vibration monitoring. Manufacturing Letters, 27, 39-41. [20] Schoen, R. R., Habetler, T. G., Kamran, F., & Bartfield, R. (1995). Motor bearing damage detection using stator current monitoring. IEEE transactions on industry applications, 31(6), 1274-1279. [21] Blodt, M., Granjon, P., Raison, B., & Rostaing, G. (2008). Models for bearing damage detection in induction motors using stator current monitoring. IEEE transactions on industrial electronics, 55(4), 1813-1822. [22] Saadaoui, W., & Jelassi, K. (2011, May). Induction motor bearing damage detection using stator current analysis. In 2011 International Conference on Power Engineering, Energy and Electrical Drives (pp. 1-6). IEEE. [23] Gangsar, P., & Tiwari, R. (2017). Comparative investigation of vibration and current monitoring for prediction of mechanical and electrical faults in induction motor based on multiclass-support vector machine algorithms. Mechanical Systems and Signal Processing, 94, 464-481. [24] Şen, M., & Kul, B. (2017, September). IoT-based wireless induction motor monitoring. In 2017 XXVI International Scientific Conference Electronics (ET) (pp. 1-5). IEEE. [25] Faiazuddin, S., Lakshmaiah, M. V., Alam, K. T., & Ravikiran, M. (2020, November). IoT based Indoor Air Quality Monitoring system using Raspberry Pi4. In 2020 4th International Conference on Electronics, Communication and Aerospace Technology (ICECA) (pp. 714-719). IEEE. [26] Islam, F. B., Nwakanma, C. I., Kim, D. S., & Lee, J. M. (2020, October). IoT-Based HVAC Monitoring System for Smart Factory. In 2020 International Conference on Information and Communication Technology Convergence (ICTC) (pp. 701-704). IEEE. [27] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778). [28] Zoph, B., Vasudevan, V., Shlens, J., & Le, Q. V. (2018). Learning transferable architectures for scalable image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 8697-8710). [29] Rukmani, P., Teja, G. K., & Vinay, M. S. (2018). Industrial monitoring using image processing, IoT and analyzing the sensor values using big data. Procedia computer science, 133, 991-997. [30] Wang, T., Yao, Y., Chen, Y., Zhang, M., Tao, F., & Snoussi, H. (2018). Auto-sorting system toward smart factory based on deep learning for image segmentation. IEEE Sensors Journal, 18(20), 8493-8501. [31] Guanyu, G., Kai, K., Xiao, G. S., & Guanhua, G. (2012, June). Design and implementation of a high-performance client/server voiceprint recognition system. In 2012 IEEE International Conference on Information and Automation (pp. 704-708). IEEE. [32] Li, P., Chen, M., Hu, F., & Xu, Y. (2015, May). A spectrogram-based voiceprint recognition using deep neural network. In The 27th Chinese Control and Decision Conference (2015 CCDC) (pp. 2923-2927). IEEE. [33] Liu, J. H., Zou, Y. X., & Huang, Y. C. (2016, December). An effective voiceprint based identity authentication system for Mandarin smartphone users. In 2016 23rd International Conference on Pattern Recognition (ICPR) (pp. 1077-1082). IEEE. [34] Xue, Y., Wang, L., Li, L., Liu, Z., & Liu, J. (2016, July). Matlab-Based Intelligent Voiceprint Recognition System. In 2016 Sixth International Conference on Instrumentation & Measurement, Computer, Communication and Control (IMCCC) (pp. 303-306). IEEE. [35] Zhu, S., Xu, C., Wang, J., Xiao, Y., & Ma, F. (2017, May). Research and application of combined kernel SVM in dynamic voiceprint password authentication system. In 2017 IEEE 9th International Conference on Communication Software and Networks (ICCSN) (pp. 1052-1055). IEEE. [36] Lei, L. I. (2021, April). Design of Acoustic System in Smart Classroom. In 2021 6th International Conference on Intelligent Computing and Signal Processing (ICSP) (pp. 916-920). IEEE. [37] Nawas, K. K., Barik, M. K., & Khan, A. N. (2021). Speaker Recognition using Random Forest. In ITM Web of Conferences (Vol. 37, p. 01022). EDP Sciences. [38] 謝維哲, & 蔡偉和. (2008). 基於梅爾頻譜質心倒頻譜係數之音樂聲紋辨識研究. 資訊科技國際期刊, 2(2), 18-31. [39] 周智勳, & 林秉韶. (2010). 最佳化梅爾倒頻譜係數之研究及其於音樂曲風辨識之應用. Journal of Information Technology and Applications (資訊科技與應用期刊), 4(1), 53-58. [40] Wang, A. (2003, October). An industrial strength audio search algorithm. In Ismir (Vol. 2003, pp. 7-13). [41] Cheng, Y. (2020, October). Music Information Retrieval Technology: Fusion of Music, Artificial Intelligence and Blockchain. In 2020 3rd International Conference on Smart BlockChain (SmartBlock) (pp. 143-146). IEEE. [42] Ghosal, A., Chakraborty, R., Chakraborty, R., Haty, S., Dhara, B. C., & Saha, S. K. (2009, November). Speech/music classification using occurrence pattern of zcr and ste. In 2009 Third International Symposium on Intelligent Information Technology Application (Vol. 3, pp. 435-438). IEEE. [43] Lalitha, S., Mudupu, A., Nandyala, B. V., & Munagala, R. (2015, December). Speech emotion recognition using DWT. In 2015 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC) (pp. 1-4). IEEE. [44] Le, P. N., Ambikairajah, E., Epps, J., Sethu, V., & Choi, E. H. (2011). Investigation of spectral centroid features for cognitive load classification. Speech Communication, 53(4), 540-551. [45] Kos, M., Kačič, Z., & Vlaj, D. (2013). Acoustic classification and segmentation using modified spectral roll-off and variance-based features. Digital Signal Processing, 23(2), 659-674. [46] On, C. K., Pandiyan, P. M., Yaacob, S., & Saudi, A. (2006, June). Mel-frequency cepstral coefficient analysis in speech recognition. In 2006 International Conference on Computing & Informatics (pp. 1-5). IEEE. [47] Martinez, J., Perez, H., Escamilla, E., & Suzuki, M. M. (2012, February). Speaker recognition using Mel frequency Cepstral Coefficients (MFCC) and Vector quantization (VQ) techniques. In CONIELECOMP 2012, 22nd International Conference on Electrical Communications and Computers (pp. 248-251). IEEE. [48] Nagawade, M. S., & Ratnaparkhe, V. R. (2017, May). Musical instrument identification using MFCC. In 2017 2nd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT) (pp. 2198-2202). IEEE. [49] Jiang, N., Grosche, P., Konz, V., & Müller, M. (2011, July). Analyzing chroma feature types for automated chord recognition. In Audio Engineering Society Conference: 42nd International Conference: Semantic Audio. Audio Engineering Society. [50] Megalingam, R. K., Reddy, R. S., Jahnavi, Y., & Motheram, M. (2019, January). ROS based control of robot using voice recognition. In 2019 Third International Conference on Inventive Systems and Control (ICISC) (pp. 501-507). IEEE. [51] Ponraj, A. S. (2020, November). Speech Recognition with Gender Identification and Speaker Diarization. In 2020 IEEE International Conference for Innovation in Technology (INOCON) (pp. 1-4). IEEE. [52] Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3), 273-297. [53] Ganapathiraju, A., Hamaker, J. E., & Picone, J. (2004). Applications of support vector machines to speech recognition. IEEE transactions on signal processing, 52(8), 2348-2355. [54] Ho, T. K. (1995, August). Random decision forests. In Proceedings of 3rd international conference on document analysis and recognition (Vol. 1, pp. 278-282). IEEE. [55] Phan, H., Maaß, M., Mazur, R., & Mertins, A. (2014). Random regression forests for acoustic event detection and classification. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 23(1), 20-31. [56] Xia, X., Togneri, R., Sohel, F., & Huang, D. (2017, July). Random forest classification based acoustic event detection. In 2017 IEEE International Conference on Multimedia and Expo (ICME) (pp. 163-168). IEEE. [57] Nawas, K. K., Barik, M. K., & Khan, A. N. (2021). Speaker Recognition using Random Forest. In ITM Web of Conferences (Vol. 37, p. 01022). EDP Sciences. [58] Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780. [59] Graves, A., Jaitly, N., & Mohamed, A. R. (2013, December). Hybrid speech recognition with deep bidirectional LSTM. In 2013 IEEE workshop on automatic speech recognition and understanding (pp. 273-278). IEEE. [60] LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., & Jackel, L. D. (1989). Backpropagation applied to handwritten zip code recognition. Neural computation, 1(4), 541-551.
|