|
Abhang, P. A., Gawali, B. W., & Mehrotra, S. C. (2016). Chapter 2—Technological Basics of EEG Recording and Operation of Apparatus. In P. A. Abhang, B. W. Gawali, & S. C. Mehrotra (Eds.), Introduction to EEG- and Speech-Based Emotion Recognition (pp. 19–50). Academic Press. Allen, A. P., & Smith, A. P. (2015). Chewing Gum: Cognitive Performance, Mood, Well-Being, and Associated Physiology. BioMed Research International, 2015, 654806. Borbély, A. A., Baumann, F., Brandeis, D., Strauch, I., & Lehmann, D. (1981). Sleep deprivation: Effect on sleep stages and EEG power density in man. Electroencephalography and Clinical Neurophysiology, 51(5), 483–493. Choi, Y.-H., Jang, W. H., Im, S.-U., Song, K.-B., Lee, H.-K., Lee, H. D., Seo, Y. S., & Jang, S. H. (2017). The brain activation pattern of the medial temporal lobe during chewing gum: A functional MRI study. Neural Regeneration Research, 12(5), 812–814. Conrad, C., & Newman, A. (2021). Measuring Mind Wandering During Online Lectures Assessed With EEG. Frontiers in Human Neuroscience, 15. https://doi.org/10.3389/fnhum.2021.697532 Fan, J., Byrne, J., Worden, M. S., Guise, K. G., McCandliss, B. D., Fossella, J., & Posner, M. I. (2007). The Relation of Brain Oscillations to Attentional Networks. Journal of Neuroscience, 27(23), 6197–6206. Fan, J., McCandliss, B. D., Sommer, T., Raz, A., & Posner, M. I. (2002). Testing the Efficiency and Independence of Attentional Networks. Journal of Cognitive Neuroscience, 14(3), 340–347. Fu, J., Xu, P., Zhao, L., & Yu, G. (2018). Impaired orienting in youth with Internet Addiction: Evidence from the Attention Network Task (ANT). Psychiatry Research, 264, 54–57. Klem, G. H., Lüders, H. O., Jasper, H. H., & Elger, C. (1999). The ten-twenty electrode system of the International Federation. The International Federation of Clinical Neurophysiology. Electroencephalography and Clinical Neurophysiology. Supplement, 52, 3–6. Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Frontiers in Psychology, 4, 863. Masumoto, Y., Morinushi, T., Kawasaki, H., Ogura, T., & Takigawa, M. (1999). Effects of three principal constituents in chewing gum on electroencephalographic activity. Psychiatry and Clinical Neurosciences, 53(1), 17–23. McConnell, M. M., & Shore, D. I. (2011). Mixing measures: Testing an assumption of the attention network test. Attention, Perception, & Psychophysics, 73(4), 1096–1107. Morinushi, T., Masumoto, Y., Kawasaki, H., & Takigawa, M. (2000). Effect on electroencephalogram of chewing flavored gum. Psychiatry and Clinical Neurosciences, 54(6), 645–651. Ni, D., Wang, S., & Liu, G. (2020). The EEG-Based Attention Analysis in Multimedia m-Learning. Computational and Mathematical Methods in Medicine, 2020, e4837291. Nolan, H., Whelan, R., & Reilly, R. B. (2010). FASTER: Fully Automated Statistical Thresholding for EEG artifact Rejection. Journal of Neuroscience Methods, 192(1), 152–162. Olkin, I., Ghurye, S. G., Hoeffding, W., Madow, W. G., & Mann, H. B. (1960). Contributions to probability and statistics: Essays in honor of Harold Hotelling. Stanford, Calif. : Univ. Press. Onyper, S. V., Carr, T. L., Farrar, J. S., & Floyd, B. R. (2011). Cognitive advantages of chewing gum. Now you see them, now you don’t. Appetite, 57(2), 321–328. Petersen, S. E., & Posner, M. I. (2012). The Attention System of the Human Brain: 20 Years After. Annual Review of Neuroscience, 35, 73–89. Ramírez-Moreno, M. A., Díaz-Padilla, M., Valenzuela-Gómez, K. D., Vargas-Martínez, A., Tudón-Martínez, J. C., Morales-Menendez, R., Ramírez-Mendoza, R. A., Pérez-Henríquez, B. L., & Lozoya-Santos, J. de J. (2021). EEG-Based Tool for Prediction of University Students’ Cognitive Performance in the Classroom. Brain Sciences, 11(6), 698. Satpathy, R. B., & Ramesh, G. P. (2020). Advance Approach for Effective EEG Artefacts Removal. In V. E. Balas, R. Kumar, & R. Srivastava (Eds.), Recent Trends and Advances in Artificial Intelligence and Internet of Things (pp. 267–278). Springer International Publishing.
Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality: Complete samples. Biometrika, 52, 591–611. Stephens, R., & Tunney, R. J. (2004). Role of glucose in chewing gum-related facilitation of cognitive function. Appetite, 43(2), 211–213. Monteiro, C. Skourup, & H. Zhang. (2019). Using EEG for Mental Fatigue Assessment: A Comprehensive Look Into the Current State of the Art. IEEE Transactions on Human-Machine Systems, 49(6), 599–610. The Attention System of the Human Brain: 20 Years After. (n.d.). Retrieved September 15, 2022 Trejo, L. J., Kubitz, K., Rosipal, R., Kochavi, R. L., & Montgomery, L. D. (2015). EEG-Based Estimation and Classification of Mental Fatigue. Psychology, 06(05), 572. Wallstrom, G. L., Kass, R. E., Miller, A., Cohn, J. F., & Fox, N. A. (2004). Automatic correction of ocular artifacts in the EEG: A comparison of regression-based and component-based methods. International Journal of Psychophysiology, 53(2), 105–119. Winkler, I., Haufe, S., & Tangermann, M. (2011). Automatic Classification of Artifactual ICA-Components for Artifact Removal in EEG Signals. Behavioral and Brain Functions, 7(1), 30. https://doi.org/10.1186/1744-9081-7-30
|