一、中文文獻
陳前嘉,格陵蘭大比目魚(Reinhardtius hippoglossoides)之魚鰭油對於抑制四氯化碳誘導的小鼠肝纖維化之功效,(碩士論文),2010二、英文文獻
1.Aydin, M.M. and K.C. Akcali, Liver fibrosis. Turk J Gastroenterol, 2018. 29(1): p. 14-21.
2.Sharma, A. and S. Nagalli, Chronic Liver Disease, in StatPearls. 2023: Treasure Island (FL).
3.Parola, M. and M. Pinzani, Liver fibrosis: Pathophysiology, pathogenetic targets and clinical issues. Mol Aspects Med, 2019. 65: p. 37-55.
4.Garcia-Compean, D., J.Z. Villarreal-Perez, M.E.O. Cavazos, F.J. Lavalle-Gonzalez, O.D. Borjas-Almaguer, A.N. Del Cueto-Aguilera, J.A. Gonzalez-Gonzalez, C. Trevino-Garza, L. Huerta-Perez, and H.J. Maldonado-Garza, Prevalence of liver fibrosis in an unselected general population with high prevalence of obesity and diabetes mellitus. Time for screening? Ann Hepatol, 2020. 19(3): p. 258-264.
5.Gines, P., L. Castera, F. Lammert, I. Graupera, M. Serra-Burriel, A.M. Allen, V.W. Wong, P. Hartmann, M. Thiele, L. Caballeria, R.J. de Knegt, I. Grgurevic, S. Augustin, E.A. Tsochatzis, J.M. Schattenberg, I.N. Guha, A. Martini, R.M. Morillas, M. Garcia-Retortillo, H.J. de Koning, N. Fabrellas, J. Pich, A.T. Ma, M.A. Diaz, D. Roulot, P.N. Newsome, M. Manns, P.S. Kamath, A. Krag, and I. LiverScreen Consortium, Population screening for liver fibrosis: Toward early diagnosis and intervention for chronic liver diseases. Hepatology, 2022. 75(1): p. 219-228.
6.Chiang, J., Liver physiology: Metabolism and detoxification. 2014.
7.Alamri, Z.Z., The role of liver in metabolism: an updated review with physiological emphasis. 2018.
8.Grant, D., Detoxification pathways in the liver. Journal of inherited metabolic disease, 1991. 14: p. 421-430.
9.Hofmann, J., V. Hackl, H. Esser, A.T. Meszaros, M. Fodor, D. Ofner, J. Troppmair, S. Schneeberger, and T. Hautz, Cell-Based Regeneration and Treatment of Liver Diseases. Int J Mol Sci, 2021. 22(19).
10.Acharya, P., K. Chouhan, S. Weiskirchen, and R. Weiskirchen, Cellular Mechanisms of Liver Fibrosis. Front Pharmacol, 2021. 12: p. 671640.
11.Blouin, A., R.P. Bolender, and E.R. Weibel, Distribution of organelles and membranes between hepatocytes and nonhepatocytes in the rat liver parenchyma. A stereological study. J Cell Biol, 1977. 72(2): p. 441-55.
12.Bechmann, L.P., R.A. Hannivoort, G. Gerken, G.S. Hotamisligil, M. Trauner, and A. Canbay, The interaction of hepatic lipid and glucose metabolism in liver diseases. J Hepatol, 2012. 56(4): p. 952-64.
13.DeLeve, L.D. and A.C. Maretti-Mira, Liver Sinusoidal Endothelial Cell: An Update. Semin Liver Dis, 2017. 37(4): p. 377-387.
14.Alpini, G., J.M. McGill, and N.F. Larusso, The pathobiology of biliary epithelia. Hepatology, 2002. 35(5): p. 1256-68.
15.Tabibian, J.H., A.I. Masyuk, T.V. Masyuk, S.P. O'Hara, and N.F. LaRusso, Physiology of cholangiocytes. Compr Physiol, 2013. 3(1): p. 541-65.
16.Azparren-Angulo, M., F. Royo, E. Gonzalez, M. Liebana, B. Brotons, J. Berganza, F. Goni-de-Cerio, N. Manicardi, L. Abad-Jorda, J. Gracia-Sancho, and J.M. Falcon-Perez, Extracellular vesicles in hepatology: Physiological role, involvement in pathogenesis, and therapeutic opportunities. Pharmacol Ther, 2021. 218: p. 107683.
17.Dixon, L.J., M. Barnes, H. Tang, M.T. Pritchard, and L.E. Nagy, Kupffer cells in the liver. Compr Physiol, 2013. 3(2): p. 785-97.
18.Kitto, L.J. and N.C. Henderson, Hepatic Stellate Cell Regulation of Liver Regeneration and Repair. Hepatol Commun, 2021. 5(3): p. 358-370.
19.Zhang, C.Y., W.G. Yuan, P. He, J.H. Lei, and C.X. Wang, Liver fibrosis and hepatic stellate cells: Etiology, pathological hallmarks and therapeutic targets. World J Gastroenterol, 2016. 22(48): p. 10512-10522.
20.Delgado, M.E., B.I. Cardenas, N. Farran, and M. Fernandez, Metabolic Reprogramming of Liver Fibrosis. Cells, 2021. 10(12).
21.Ramachandran, P. and J.P. Iredale, Reversibility of liver fibrosis. Annals of hepatology, 2009. 8(4): p. 283-291.
22.Henderson, N.C., F. Rieder, and T.A. Wynn, Fibrosis: from mechanisms to medicines. Nature, 2020. 587(7835): p. 555-566.
23.Iredale, J.P., A. Thompson, and N.C. Henderson, Extracellular matrix degradation in liver fibrosis: biochemistry and regulation. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 2013. 1832(7): p. 876-883.
24.Ismail, M.H. and M. Pinzani, Reversal of liver fibrosis. Saudi J Gastroenterol, 2009. 15(1): p. 72-9.
25.Popa, S.L., A. Ismaiel, L. Abenavoli, A.M. Padureanu, M.O. Dita, R. Bolchis, M.A. Munteanu, V.D. Brata, C. Pop, A. Bosneag, D.I. Dumitrascu, M. Barsan, and L. David, Diagnosis of Liver Fibrosis Using Artificial Intelligence: A Systematic Review. Medicina (Kaunas), 2023. 59(5).
26.Bram, Y., D.-H.T. Nguyen, V. Gupta, J. Park, C. Richardson, V. Chandar, and R.E. Schwartz, Cell and tissue therapy for the treatment of chronic liver disease. Annual review of biomedical engineering, 2021. 23: p. 517-546.
27.Delgado, M.E., B.I. Cárdenas, N. Farran, and M. Fernandez, Metabolic reprogramming of liver fibrosis. Cells, 2021. 10(12): p. 3604.
28.Weiskirchen, R. and F. Tacke, Liver fibrosis: Which mechanisms matter? Clinical Liver Disease, 2016. 8(4): p. 94.
29.Zehra, M., J.C. Curry, S.S. Pillai, H.V. Lakhani, C.E. Edwards, and K. Sodhi, Elucidating Potential Profibrotic Mechanisms of Emerging Biomarkers for Early Prognosis of Hepatic Fibrosis. Int J Mol Sci, 2020. 21(13).
30.Cohen-Naftaly, M. and S.L. Friedman, Current status of novel antifibrotic therapies in patients with chronic liver disease. Therapeutic advances in gastroenterology, 2011. 4(6): p. 391-417.
31.Liu, X., J. Xu, S. Rosenthal, L.-j. Zhang, R. McCubbin, N. Meshgin, L. Shang, Y. Koyama, H.-Y. Ma, and S. Sharma, Identification of lineage-specific transcription factors that prevent activation of hepatic stellate cells and promote fibrosis resolution. Gastroenterology, 2020. 158(6): p. 1728-1744. e14.
32.Khomich, O., A.V. Ivanov, and B. Bartosch, Metabolic Hallmarks of Hepatic Stellate Cells in Liver Fibrosis. Cells, 2019. 9(1).
33.Cai, X., J. Wang, J. Wang, Q. Zhou, B. Yang, Q. He, and Q. Weng, Intercellular crosstalk of hepatic stellate cells in liver fibrosis: New insights into therapy. Pharmacol Res, 2020. 155: p. 104720.
34.Puche, J.E., Y. Saiman, and S.L. Friedman, Hepatic stellate cells and liver fibrosis. Compr Physiol, 2013. 3(4): p. 1473-1492.
35.Zhubanchaliyev, A., A. Temirbekuly, K. Kongrtay, L.C. Wanshura, and J. Kunz, Targeting Mechanotransduction at the Transcriptional Level: YAP and BRD4 Are Novel Therapeutic Targets for the Reversal of Liver Fibrosis. Front Pharmacol, 2016. 7: p. 462.
36.Karakoyun, B., The promising role of anti-fibrotic agent halofuginone in liver fibrosis/cirrhosis. Liver cirrhosis: update and current challenges, 2017. 257.
37.Caligiuri, A., A. Gentilini, M. Pastore, S. Gitto, and F. Marra, Cellular and Molecular Mechanisms Underlying Liver Fibrosis Regression. Cells, 2021. 10(10).
38.Kisseleva, T., M. Cong, Y. Paik, D. Scholten, C. Jiang, C. Benner, K. Iwaisako, T. Moore-Morris, B. Scott, H. Tsukamoto, S.M. Evans, W. Dillmann, C.K. Glass, and D.A. Brenner, Myofibroblasts revert to an inactive phenotype during regression of liver fibrosis. Proc Natl Acad Sci U S A, 2012. 109(24): p. 9448-53.
39.Liu, X., J. Xu, D.A. Brenner, and T. Kisseleva, Reversibility of Liver Fibrosis and Inactivation of Fibrogenic Myofibroblasts. Curr Pathobiol Rep, 2013. 1(3): p. 209-214.
40.Moreira, R.K., Hepatic stellate cells and liver fibrosis. Archives of pathology & laboratory medicine, 2007. 131(11): p. 1728-1734.
41.Hill, C., M.G. Jones, D.E. Davies, and Y. Wang, Epithelial-mesenchymal transition contributes to pulmonary fibrosis via aberrant epithelial/fibroblastic cross-talk. J Lung Health Dis, 2019. 3(2): p. 31-35.
42.Yu, K., Q. Li, G. Shi, and N. Li, Involvement of epithelial-mesenchymal transition in liver fibrosis. Saudi J Gastroenterol, 2018. 24(1): p. 5-11.
43.Leggett, S.E., A.M. Hruska, M. Guo, and I.Y. Wong, The epithelial-mesenchymal transition and the cytoskeleton in bioengineered systems. Cell Commun Signal, 2021. 19(1): p. 32.
44.Lamouille, S., J. Xu, and R. Derynck, Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol, 2014. 15(3): p. 178-96.
45.Xie, G. and A.M. Diehl, Evidence for and against epithelial-to-mesenchymal transition in the liver. Am J Physiol Gastrointest Liver Physiol, 2013. 305(12): p. G881-90.
46.Özel, M., M. Baskol, H. Akalın, and G. Baskol, Suberoylanilide Hydroxamic Acid (SAHA) Reduces Fibrosis Markers and Deactivates Human Stellate Cells via the Epithelial–Mesenchymal Transition (EMT). Cell Biochemistry and Biophysics, 2021. 79: p. 349-357.
47.Copple, B.L., Phenotypic Changes in Hepatic Stellate Cells in Response to Toxic Liver Injury. Current Pathobiology Reports, 2014. 2: p. 155-162.
48.Liu, Z., L.A. Van Grunsven, E. Van Rossen, B. Schroyen, J.P. Timmermans, A. Geerts, and H. Reynaert, Blebbistatin inhibits contraction and accelerates migration in mouse hepatic stellate cells. British journal of pharmacology, 2010. 159(2): p. 304-315.
49.Yang, C., M. Zeisberg, B. Mosterman, A. Sudhakar, U. Yerramalla, K. Holthaus, L. Xu, F. Eng, N. Afdhal, and R. Kalluri, Liver fibrosis: insights into migration of hepatic stellate cells in response to extracellular matrix and growth factors. Gastroenterology, 2003. 124(1): p. 147-59.
50.Geng, W., C. Li, Y. Zhan, R. Zhang, and J. Zheng, Thymoquinone alleviates liver fibrosis via miR-30a-mediated epithelial-mesenchymal transition. J Cell Physiol, 2020.
51.Hu, J., Y. Liu, Z. Pan, X. Huang, J. Wang, W. Cao, and Z. Chen, Eupatilin Ameliorates Hepatic Fibrosis and Hepatic Stellate Cell Activation by Suppressing β-catenin/PAI-1 Pathway. International Journal of Molecular Sciences, 2023. 24(6): p. 5933.
52.Kalluri, R. and R.A. Weinberg, The basics of epithelial-mesenchymal transition. The Journal of clinical investigation, 2009. 119(6): p. 1420-1428.
53.El Taghdouini, A. and L.A. van Grunsven, Epigenetic regulation of hepatic stellate cell activation and liver fibrosis. Expert Rev Gastroenterol Hepatol, 2016. 10(12): p. 1397-1408.
54.Kim, J.Y., H.J. An, W.H. Kim, M.G. Gwon, H. Gu, Y.Y. Park, and K.K. Park, Anti-fibrotic Effects of Synthetic Oligodeoxynucleotide for TGF-beta1 and Smad in an Animal Model of Liver Cirrhosis. Mol Ther Nucleic Acids, 2017. 8: p. 250-263.
55.Shi, Y. and J. Massagué, Mechanisms of TGF-β signaling from cell membrane to the nucleus. cell, 2003. 113(6): p. 685-700.
56.Sisto, M., D. Ribatti, and S. Lisi, SMADS-mediate molecular mechanisms in Sjögren’s syndrome. International Journal of Molecular Sciences, 2021. 22(6): p. 3203.
57.Dewidar, B., C. Meyer, S. Dooley, and A.N. Meindl-Beinker, TGF-beta in Hepatic Stellate Cell Activation and Liver Fibrogenesis-Updated 2019. Cells, 2019. 8(11).
58.Miyazono, K., Transforming growth factor-β signaling in epithelial-mesenchymal transition and progression of cancer. Proceedings of the Japan Academy, Series B, 2009. 85(8): p. 314-323.
59.Gadir, N., E. Lee, A. Garcia, A. Toschi, and D.A. Foster, Suppression of TGF-beta signaling by phospholipase D. Cell Cycle, 2007. 6(22): p. 2840-5.
60.Yan, X., X. Xiong, and Y.-G. Chen, Feedback regulation of TGF-β signaling. Acta biochimica et biophysica Sinica, 2018. 50(1): p. 37-50.
61.Shi, X., C.D. Young, H. Zhou, and X.-J. Wang, Transforming growth factor-β signaling in fibrotic diseases and cancer-associated fibroblasts. Biomolecules, 2020. 10(12): p. 1666.
62.Zhang, Y.E., Non-Smad Signaling Pathways of the TGF-beta Family. Cold Spring Harb Perspect Biol, 2017. 9(2).
63.Qin, L., J. Qin, X. Zhen, Q. Yang, and L. Huang, Curcumin protects against hepatic stellate cells activation and migration by inhibiting the CXCL12/CXCR4 biological axis in liver fibrosis:A study in vitro and in vivo. Biomed Pharmacother, 2018. 101: p. 599-607.
64.Shu, G., C. Dai, A. Yusuf, H. Sun, and X. Deng, Limonin relieves TGF-beta-induced hepatocyte EMT and hepatic stellate cell activation in vitro and CCl(4)-induced liver fibrosis in mice via upregulating Smad7 and subsequent suppression of TGF-beta/Smad cascade. J Nutr Biochem, 2022. 107: p. 109039.
65.March, J.T., G. Golshirazi, V. Cernisova, H. Carr, Y. Leong, N. Lu-Nguyen, and L.J. Popplewell, Targeting TGFβ signaling to address fibrosis using antisense oligonucleotides. Biomedicines, 2018. 6(3): p. 74.
66.Zhang, Y.E., Non-Smad signaling pathways of the TGF-β family. Cold Spring Harbor perspectives in biology, 2017. 9(2): p. a022129.
67.Chang, Y. and H. Li, Hepatic Antifibrotic Pharmacotherapy: Are We Approaching Success? J Clin Transl Hepatol, 2020. 8(2): p. 222-229.
68.Papatheodoridis, G.V., R. Idilman, G.N. Dalekos, M. Buti, H. Chi, F. van Boemmel, J.L. Calleja, V. Sypsa, J. Goulis, S. Manolakopoulos, A. Loglio, S. Siakavellas, O. Keskin, N. Gatselis, B.E. Hansen, M. Lehretz, J. de la Revilla, S. Savvidou, A. Kourikou, I. Vlachogiannakos, K. Galanis, C. Yurdaydin, T. Berg, M. Colombo, R. Esteban, H.L.A. Janssen, and P. Lampertico, The risk of hepatocellular carcinoma decreases after the first 5 years of entecavir or tenofovir in Caucasians with chronic hepatitis B. Hepatology, 2017. 66(5): p. 1444-1453.
69.Arab, J.P., M. Arrese, and M. Trauner, Recent Insights into the Pathogenesis of Nonalcoholic Fatty Liver Disease. Annu Rev Pathol, 2018. 13: p. 321-350.
70.Marra, F. and F. Tacke, Roles for chemokines in liver disease. Gastroenterology, 2014. 147(3): p. 577-594 e1.
71.Krenkel, O., T. Puengel, O. Govaere, A.T. Abdallah, J.C. Mossanen, M. Kohlhepp, A. Liepelt, E. Lefebvre, T. Luedde, C. Hellerbrand, R. Weiskirchen, T. Longerich, I.G. Costa, Q.M. Anstee, C. Trautwein, and F. Tacke, Therapeutic inhibition of inflammatory monocyte recruitment reduces steatohepatitis and liver fibrosis. Hepatology, 2018. 67(4): p. 1270-1283.
72.Watson, M.R., K. Wallace, R.G. Gieling, D.M. Manas, E. Jaffray, R.T. Hay, D.A. Mann, and F. Oakley, NF-kappaB is a critical regulator of the survival of rodent and human hepatic myofibroblasts. J Hepatol, 2008. 48(4): p. 589-97.
73.Wu, B., R. Wang, S. Li, Y. Wang, F. Song, Y. Gu, and Y. Yuan, Antifibrotic effects of Fraxetin on carbon tetrachloride-induced liver fibrosis by targeting NF-kappaB/IkappaBalpha, MAPKs and Bcl-2/Bax pathways. Pharmacol Rep, 2019. 71(3): p. 409-416.
74.Sun, X., X. Huang, X. Zhu, L. Liu, S. Mo, H. Wang, X. Wei, S. Lu, F. Bai, D. Wang, X. Lin, and J. Lin, HBOA ameliorates CCl(4)-incuded liver fibrosis through inhibiting TGF-beta1/Smads, NF-kappaB and ERK signaling pathways. Biomed Pharmacother, 2019. 115: p. 108901.
75.Bonnans, C., J. Chou, and Z. Werb, Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol, 2014. 15(12): p. 786-801.
76.Chang, Y. and H. Li, Hepatic antifibrotic pharmacotherapy: are we approaching success? Journal of Clinical and Translational Hepatology, 2020. 8(2): p. 222.
77.Singh, S., T. Negi, N.A. Sagar, Y. Kumar, A. Tarafdar, R. Sirohi, R. Sindhu, and A. Pandey, Sustainable processes for treatment and management of seafood solid waste. Sci Total Environ, 2022. 817: p. 152951.
78.Hoyer, B., A. Bernhardt, S. Heinemann, I. Stachel, M. Meyer, and M. Gelinsky, Biomimetically mineralized salmon collagen scaffolds for application in bone tissue engineering. Biomacromolecules, 2012. 13(4): p. 1059-66.
79.Ge, B., H. Wang, J. Li, H. Liu, Y. Yin, N. Zhang, and S. Qin, Comprehensive Assessment of Nile Tilapia Skin (Oreochromis niloticus) Collagen Hydrogels for Wound Dressings. Mar Drugs, 2020. 18(4).
80.Nag, M., D. Lahiri, A. Dey, T. Sarkar, S. Pati, S. Joshi, H. Bunawan, A. Mohammed, H.A. Edinur, S. Ghosh, and R.R. Ray, Seafood Discards: A Potent Source of Enzymes and Biomacromolecules With Nutritional and Nutraceutical Significance. Front Nutr, 2022. 9: p. 879929.
81.Julshamn, K., B.E. Grosvik, K. Nedreaas, and A. Maage, Mercury concentration in fillets of Greenland halibut (Reinhardtius hippoglossoides) caught in the Barents Sea in January 2006. Sci Total Environ, 2006. 372(1): p. 345-9.
82.Viðarsson, J.R., M. Nielsen, G. Þórðarson, G. Stefansson, and P. Salz, Nordic and North European Flatfish Value Chains. 2022: Nordic Council of Ministers.
83.Zhu, W., W. He, W. Wang, Y. Bu, X. Li, J. Li, and Y. Zhang, Effects of thermoultrasonic treatment on characteristics of micro-nano particles and flavor in Greenland halibut bone soup. Ultrason Sonochem, 2021. 79: p. 105785.
84.Pateiro, M., R. Dominguez, T. Varzakas, P.E.S. Munekata, E. Movilla Fierro, and J.M. Lorenzo, Omega-3-Rich Oils from Marine Side Streams and Their Potential Application in Food. Mar Drugs, 2021. 19(5).
85.Rohman, A., A.R. Putri, A. Windarsih, K. Nisa, and L.A. Lestari, The employment of analytical techniques and chemometrics for authentication of fish oils: A review. Food Control, 2021. 124: p. 107864.
86.Tokarczyk, G., G. Bienkiewicz, and P. Biernacka, Susceptibility to oxidation of selected freshwater fish species lipids as a potential source of fish oil in dietary supplements. International Journal of Food Science, 2021. 2021.
87.Calder, P.C., Dietary modification of inflammation with lipids. Proc Nutr Soc, 2002. 61(3): p. 345-58.
88.Bhattacharya, A., D. Sun, M. Rahman, and G. Fernandes, Different ratios of eicosapentaenoic and docosahexaenoic omega-3 fatty acids in commercial fish oils differentially alter pro-inflammatory cytokines in peritoneal macrophages from C57BL/6 female mice. J Nutr Biochem, 2007. 18(1): p. 23-30.
89.Lima Rocha, J.E., M. Mendes Furtado, R.S. Mello Neto, A.V. da Silva Mendes, A. Brito, J.O.C. Sena de Almeida, E.I. Rodrigues Queiroz, J.V. de Sousa Franca, M.G. Silva Primo, A.L.C. Cunha Sales, A. Gomes Vasconcelos, W. Felix Cabral, S.A. Souza Kuckelhaus, J.R. de Souza de Almeida Leite, A.K.M. Fortes Lustosa, M. Lucarini, A. Durazzo, D.D.R. Arcanjo, and M. Martins, Effects of Fish Oil Supplementation on Oxidative Stress Biomarkers and Liver Damage in Hypercholesterolemic Rats. Nutrients, 2022. 14(3).
90.Zhang, K., Y. Chang, Z. Shi, X. Han, Y. Han, Q. Yao, Z. Hu, H. Cui, L. Zheng, T. Han, and W. Hong, omega-3 PUFAs ameliorate liver fibrosis and inhibit hepatic stellate cells proliferation and activation by promoting YAP/TAZ degradation. Sci Rep, 2016. 6: p. 30029.
91.Wang, W., H. Yang, D. Johnson, C. Gensler, E. Decker, and G. Zhang, Chemistry and biology of omega-3 PUFA peroxidation-derived compounds. Prostaglandins Other Lipid Mediat, 2017. 132: p. 84-91.
92.Albert, B.B., D. Cameron-Smith, P.L. Hofman, and W.S. Cutfield, Oxidation of marine omega-3 supplements and human health. Biomed Res Int, 2013. 2013: p. 464921.
93.Mashek, D.G. and C. Wu, MUFAs. Adv Nutr, 2015. 6(3): p. 276-7.
94.Soto-Alarcon, S.A., R. Valenzuela, A. Valenzuela, and L.A. Videla, Liver protective effects of extra virgin olive oil: Interaction between its chemical composition and the cell-signaling pathways involved in protection. Endocrine, Metabolic & Immune Disorders-Drug Targets (Formerly Current Drug Targets-Immune, Endocrine & Metabolic Disorders), 2018. 18(1): p. 75-84.
95.Hernandez, R., E. Martinez-Lara, A. Canuelo, M.L. del Moral, S. Blanco, E. Siles, A. Jimenez, J.A. Pedrosa, and M.A. Peinado, Steatosis recovery after treatment with a balanced sunflower or olive oil-based diet: involvement of perisinusoidal stellate cells. World J Gastroenterol, 2005. 11(47): p. 7480-5.
96.Fang, H.L., J.T. Lai, and W.C. Lin, Inhibitory effect of olive oil on fibrosis induced by carbon tetrachloride in rat liver. Clin Nutr, 2008. 27(6): p. 900-7.
97.Yang, Z.H., M. Bando, T. Sakurai, Y. Chen, B. Emma-Okon, B. Wilhite, D. Fukuda, B. Vaisman, M. Pryor, Y. Wakabayashi, M. Sampson, Z.X. Yu, A. Sakurai, A. Zarzour, H. Miyahara, J. Takeo, H. Sakaue, M. Sata, and A.T. Remaley, Long-chain monounsaturated fatty acid-rich fish oil attenuates the development of atherosclerosis in mouse models. Mol Nutr Food Res, 2016. 60(10): p. 2208-2218.
98.Wang, W., H. Yang, D. Johnson, C. Gensler, E. Decker, and G. Zhang, Chemistry and biology of ω-3 PUFA peroxidation-derived compounds. Prostaglandins & other lipid mediators, 2017. 132: p. 84-91.
99.Isaeva, O.V., L.Y. Il'chenko, A.A. Saryglar, A.A. Karlsen, K.K. Kyuregyan, and M.I. Mikhailov, [Clinical course and outcomes of chronic viral hepatitis D in patients from Republic of Tuva as endemic region]. Vopr Virusol, 2021. 66(1): p. 74-83.
100.Meharie, B.G. and T.A. Tunta, Phytolacca dodecandra (Phytolaccaceae) Root Extract Exhibits Antioxidant and Hepatoprotective Activities in Mice with CCl(4)-Induced Acute Liver Damage. Clin Exp Gastroenterol, 2021. 14: p. 59-70.
101.Smith-Cortinez, N., R.R. Fagundes, V. Gomez, D. Kong, D.R. de Waart, J. Heegsma, S. Sydor, P. Olinga, V.E. de Meijer, C.T. Taylor, R. Bank, C.C. Paulusma, and K.N. Faber, Collagen release by human hepatic stellate cells requires vitamin C and is efficiently blocked by hydroxylase inhibition. FASEB J, 2021. 35(2): p. e21219.
102.Park, Y.J., D.M. Kim, M.H. Jeong, J.S. Yu, H.M. So, I.J. Bang, H.R. Kim, S.H. Kwon, K.H. Kim, and K.H. Chung, (-)-Catechin-7-O-beta-d-Apiofuranoside Inhibits Hepatic Stellate Cell Activation by Suppressing the STAT3 Signaling Pathway. Cells, 2019. 9(1).
103.Esteves, G.P., C.S. Manca, H.P. Veida-Silva, P.P. Ovidio, H. Holland, F.S. Matsuo, M.K. Osako, and A.A. Jordao, A fish oil-rich diet leads to lower adiposity and serum triglycerides but increases liver lipid peroxidation in fructose-fed rats. Egyptian Liver Journal, 2020. 10: p. 1-9.
104.Abdelaziz, D.H. and S.A. Ali, The protective effect of Phoenix dactylifera L. seeds against CCl4-induced hepatotoxicity in rats. J Ethnopharmacol, 2014. 155(1): p. 736-43.
105.Zhang, J., N. Jiang, J. Ping, and L. Xu, TGF‑beta1‑induced autophagy activates hepatic stellate cells via the ERK and JNK signaling pathways. Int J Mol Med, 2021. 47(1): p. 256-266.
106.Shi, X., C.D. Young, H. Zhou, and X. Wang, Transforming Growth Factor-beta Signaling in Fibrotic Diseases and Cancer-Associated Fibroblasts. Biomolecules, 2020. 10(12).
107.Fabregat, I. and D. Caballero-Diaz, Transforming Growth Factor-beta-Induced Cell Plasticity in Liver Fibrosis and Hepatocarcinogenesis. Front Oncol, 2018. 8: p. 357.
108.Peng, D., M. Fu, M. Wang, Y. Wei, and X. Wei, Targeting TGF-beta signal transduction for fibrosis and cancer therapy. Mol Cancer, 2022. 21(1): p. 104.
109.Yin, C., K.J. Evason, K. Asahina, and D.Y. Stainier, Hepatic stellate cells in liver development, regeneration, and cancer. J Clin Invest, 2013. 123(5): p. 1902-10.
110.Han, Y.P., L. Zhou, J. Wang, S. Xiong, W.L. Garner, S.W. French, and H. Tsukamoto, Essential role of matrix metalloproteinases in interleukin-1-induced myofibroblastic activation of hepatic stellate cell in collagen. J Biol Chem, 2004. 279(6): p. 4820-8.
111.Lestari, N., M. Louisa, V. Soetikno, A.G. Suwana, P.A. Ramadhan, T. Akmal, and W. Arozal, Alpha Mangostin Inhibits the Proliferation and Activation of Acetaldehyde Induced Hepatic Stellate Cells through TGF-beta and ERK 1/2 Pathways. J Toxicol, 2018. 2018: p. 5360496.
112.Hu, J., Y. Liu, Z. Pan, X. Huang, J. Wang, W. Cao, and Z. Chen, Eupatilin Ameliorates Hepatic Fibrosis and Hepatic Stellate Cell Activation by Suppressing beta-catenin/PAI-1 Pathway. Int J Mol Sci, 2023. 24(6).
113.Razali, R.A., Y. Lokanathan, M.D. Yazid, A.S. Ansari, A.B. Saim, and R.B. Hj Idrus, Modulation of Epithelial to Mesenchymal Transition Signaling Pathways by Olea Europaea and Its Active Compounds. Int J Mol Sci, 2019. 20(14).
114.Stone, R.C., I. Pastar, N. Ojeh, V. Chen, S. Liu, K.I. Garzon, and M. Tomic-Canic, Epithelial-mesenchymal transition in tissue repair and fibrosis. Cell Tissue Res, 2016. 365(3): p. 495-506.
115.Amack, J.D., Cellular dynamics of EMT: Lessons from live in vivo imaging of embryonic development. Cell Communication and Signaling, 2021. 19(1): p. 1-16.
116.Carson, J.P., M.W. Robinson, G.A. Ramm, and G.N. Gobert, RNA sequencing of LX-2 cells treated with TGF-beta1 identifies genes associated with hepatic stellate cell activation. Mol Biol Rep, 2021. 48(12): p. 7677-7688.
117.Liu, Y.W., Y.T. Chiu, S.L. Fu, and Y.T. Huang, Osthole ameliorates hepatic fibrosis and inhibits hepatic stellate cell activation. J Biomed Sci, 2015. 22(1): p. 63.
118.Park, Y.J., H.T. An, J.S. Park, O. Park, A.J. Duh, K. Kim, K.H. Chung, K.C. Lee, Y. Oh, and S. Lee, Tyrosine kinase inhibitor neratinib attenuates liver fibrosis by targeting activated hepatic stellate cells. Sci Rep, 2020. 10(1): p. 14756.
119.Lee, C., M. Kim, J. Han, M. Yoon, and Y. Jung, Mesenchymal Stem Cells Influence Activation of Hepatic Stellate Cells, and Constitute a Promising Therapy for Liver Fibrosis. Biomedicines, 2021. 9(11).
120.Bataller, R. and D.A. Brenner, Liver fibrosis. J Clin Invest, 2005. 115(2): p. 209-18.
121.Dixon, J.E., J.E. Allan, P.C. Doherty, and D.A. Hume, Immunohistochemical analysis of the involvement of F4/80 and Ia-positive macrophages in mouse liver infected with lymphocytic choriomeningitis virus. J Leukoc Biol, 1986. 40(5): p. 617-28.
122.Wang, Z., K. Du, N. Jin, B. Tang, and W. Zhang, Macrophage in liver Fibrosis: Identities and mechanisms. International Immunopharmacology, 2023. 120: p. 110357.
123.Bai, L., X. Liu, Q. Zheng, M. Kong, X. Zhang, R. Hu, J. Lou, F. Ren, Y. Chen, and S. Zheng, M2-like macrophages in the fibrotic liver protect mice against lethal insults through conferring apoptosis resistance to hepatocytes. Scientific reports, 2017. 7(1): p. 10518.
124.Li, N., F.J. Liu, D.D. Li, C.X. Sun, J. Li, M.H. Qu, C.P. Cui, and D.J. Zhang, Hepatopoietin Cn (HPPCn) Generates Protective Effects on Acute Liver Injury. Front Pharmacol, 2019. 10: p. 646.
125.Guicciardi, M.E. and G.J. Gores, Apoptosis: a mechanism of acute and chronic liver injury. Gut, 2005. 54(7): p. 1024-33.
126.Weber, L.W., M. Boll, and A. Stampfl, Hepatotoxicity and mechanism of action of haloalkanes: carbon tetrachloride as a toxicological model. Crit Rev Toxicol, 2003. 33(2): p. 105-36.
127.Wang, M., X.J. Zhang, R. Feng, Y. Jiang, D.Y. Zhang, C. He, P. Li, and J.B. Wan, Hepatoprotective properties of Penthorum chinense Pursh against carbon tetrachloride-induced acute liver injury in mice. Chin Med, 2017. 12: p. 32.