資料載入處理中...
跳到主要內容
臺灣博碩士論文加值系統
:::
網站導覽
|
首頁
|
關於本站
|
聯絡我們
|
國圖首頁
|
常見問題
|
操作說明
English
|
FB 專頁
|
Mobile
免費會員
登入
|
註冊
切換版面粉紅色
切換版面綠色
切換版面橘色
切換版面淡藍色
切換版面黃色
切換版面藍色
功能切換導覽列
(216.73.216.236) 您好!臺灣時間:2025/07/22 11:14
字體大小:
字級大小SCRIPT,如您的瀏覽器不支援,IE6請利用鍵盤按住ALT鍵 + V → X → (G)最大(L)較大(M)中(S)較小(A)小,來選擇適合您的文字大小,如為IE7或Firefoxy瀏覽器則可利用鍵盤 Ctrl + (+)放大 (-)縮小來改變字型大小。
字體大小變更功能,需開啟瀏覽器的JAVASCRIPT功能
:::
詳目顯示
recordfocus
第 1 筆 / 共 1 筆
/1
頁
論文基本資料
摘要
外文摘要
目次
參考文獻
電子全文
紙本論文
QR Code
本論文永久網址
:
複製永久網址
Twitter
研究生:
黃建隆
論文名稱:
R134 冷媒運用於雙重管熱交換器最佳熱效率模擬分析
論文名稱(外文):
Simulation Analysis of Optimal Thermal Efficiency of R134A Refrigerant for Double Tube Heat Exchanger
指導教授:
江家慶
指導教授(外文):
Chiang,Chia-Chin
口試委員:
許兆民
、
傅明宇
、
陳元宗
、
陳道星
、
江家慶
口試委員(外文):
Hsu,Chao-Min
、
Fu,Ming-Yu
、
Chen,Yuan-Tsung
、
Chen,Tao-Hsiang
、
Chiang,Chia-Chin
口試日期:
2019-06-26
學位類別:
博士
校院名稱:
國立高雄科技大學
系所名稱:
機械工程系
學門:
工程學門
學類:
機械工程學類
論文種類:
學術論文
論文出版年:
2019
畢業學年度:
107
語文別:
英文
論文頁數:
125
中文關鍵詞:
熱交換器
外文關鍵詞:
Heat Exchanger
相關次數:
被引用:
1
點閱:444
評分:
下載:57
書目收藏:1
熱交換器隨著工業的進步商業的發展,一直是一個相當重要的設備。在工業生產中,是一種為了實現物料之間熱量傳遞的設備,作為通用工藝設備,有著廣泛的應用,統稱為熱交換器。
本論文利用COMSOL 模擬軟體,利用連續方程式、動量方程式、動能方程式、紊流模式和適當之邊界條件,研究探討螺旋和U型雙重管熱交換器之流體熱傳特性。
T7螺旋雙重管熱交換器管端工作流體R134A冷媒的熱交換方式,熱效率變化0.002,熱效率變化0.001己達到收斂,為螺旋雙重管熱交換器最佳構型熱傳效率。T1~T8螺旋雙重管熱交換器在構型(圈數)相同時,殼端工作流體設置R134A冷媒比管端工作流體設置R134A冷媒之熱傅效率高,所以高溫流體R134A冷媒適合在外側(殼側),將內側(管側)冷流體包覆的情況,熱傳效率較高。
S7 U型雙重管熱交換器殼端工作流體R134A冷媒的熱交換方式,熱效率變化0.0011,為螺旋雙重管熱交換器最佳構型熱傳效率。S1~S8螺旋雙重管熱交換器在構型(組數)相同時,殼端工作流體設置R134A冷媒比管端工作流體設置R134A冷媒之熱傅效率高,所以高溫流體R134A冷媒適合在外側(殼側),將內側(管側)冷流體包覆的情況,熱傳效率較高。
U型雙重管熱交換器有較佳的熱傳效率,以同樣熱傳總面積823.74平方公分,6組(S6)和6圈(T6) 雙重管熱交換器比較,U型雙重管熱交換器有增加0.002的熱傳效率,S6 U型雙重管熱交換器熱傳效率0.9927和T7螺旋雙重管熱交換器熱傳效率0.9920略大0.0007,但熱傳總面積少137.29平方公分,相對使用材料比較省,所以S6 U型雙重管熱交換器為研究最佳雙重管熱交換器構型。
Heat exchangers have always been important devices for advancements and developments in industrial and commercial activities. In industrial production, heat exchangers have a wide scope of applications and are a type of universal technological equipment designed to achieve heat transfer between materials.
In this study, COMSOL simulation software was employed and continuity equations, momentum equations, kinetic equations, turbulent models, and appropriate boundary conditions were adopted to investigate the heat transfer characteristics of fluids in helical-coil and U-shaped double tube heat exchangers.
In the T7 helical-coil double tube heat exchanger with R134A refrigerant at the tube end, convergence was not attained as the change in thermal efficiency was 0.002; however, in the T7 helical-coil double tube heat exchanger with R134A refrigerant at the shell end, convergence was attained as the change in thermal efficiency was 0.001. This configuration had the best heat transfer efficiency for helical-coil double tube heat exchangers. When the T1 to T8 helical-coil double tube heat exchangers had an equal number of turns, the working fluid R134A had a higher heat transfer efficiency when it was placed at the shell end than when it was placed at the tube end. Therefore, it is suitable for high-temperature R134A refrigerant to flow through the exterior (shell-side) which covers the cooling fluid flowing through the interior (tube-side), so as to achieve a higher heat transfer efficiency.
In the S7 U-shaped double tube heat exchanger with R134A refrigerant at the shell end, convergence was attained as the change in thermal efficiency was 0.0011. This configuration had the best heat transfer efficiency for U-shaped double tube heat exchangers. For an equal number of segments in the S1 to S8 U-shaped double tube heat exchangers, the working fluid R134A had a higher heat transfer efficiency when it was placed at the shell end than when it was placed at the tube end. Therefore, it is suitable for high-temperature R134A refrigerant to be flowed through the exterior (shell-side) which covers the cooling fluid flowing through the interior (tube-side), so as to achieve a higher heat transfer efficiency.
The U-shaped double tube heat exchangers had better heat transfer efficiencies. At equal heat transfer areas of 823.74 cm2 and at equal numbers of turns/segments (six), the S6 U-shaped double tube heat exchanger enhanced its heat transfer efficiency by 0.002. In other words, it achieved a heat transfer efficiency of 0.9927, which was slightly greater (by 0.0007) than the T7 helical-coil double tube exchanger’s heat transfer efficiency, which was 0.9920. However, the S6 exchanger’s total heat-transfer area was 137.29 cm2 less and the material cost was comparably lower; hence, the S6 U-shaped double tube heat exchanger was the optimal type of heat exchanger in this study.
摘要 I
ABSTRACT III
Acknowledgements VI
Table of Contents VII
List of Tables X
List of Figures XI
Symbols XII
Greek symbols XIV
Chapter 1 Introduction 1
1.1 Foreword 1
1.2 Research background 3
1.3 Research motivations and objectives 4
1.4 Thesis framework 6
Chapter 2 Basic principles, historical development, literature review, and types of heat exchangers 8
2.1 Basic principles 8
2.2 Historical development of heat exchangers 10
2.3 Literature review regarding spiral heat exchangers 14
2.4 Types of heat exchangers 19
2.4.1 Classification of heat exchangers 20
2.4.2 Regenerative Heat Exchangers 21
2.4.3 mixer-heat exchanger 23
2.4.4 Differential wall heat exchanger 24
Chapter 3 Physical models and numerical methods 37
3.1 Physical models and basic assumptions 37
3.2 Governing equations 49
3.3 Numerical simulation procedure 52
3.3.1 Pre-processing 53
3.3.2 Solution process 54
3.3.3 Post-processing 55
3.4 Boundary conditions specification 56
3.4.1 Helical-coil double tube heat exchanger 56
3.4.1.1 R134 refrigerant at tube-side, cooling water at shell-side 56
3.4.1.2 R134 refrigerant at shell-side, cooling water at tube-side 57
3.4.2 U-shaped double tube heat exchanger 58
3.4.2.1 R134 refrigerant at tube-side, cooling water at shell-side 58
3.4.2.2 R134 refrigerant at shell-side, cooling water at tube-side 59
3.5 Mesh generation 60
Chapter 4 Results and discussion 71
4.1 Flow field thermal distribution of helical-coil double tube heat exchanger 71
4.1.1 Analysis of heat transfer efficiency of R134 refrigerant at tube-side, cooling water at shell-side 72
4.1.2 Analysis of heat transfer efficiency of R134 refrigerant at shell-side, cooling water at tube-side 82
4.2 Flow field thermal distribution of U-shaped double tube heat exchanger 93
4.2.1 Analysis of heat transfer efficiency of R134 refrigerant at tube-side, cooling water at shell-side 94
4.2.2 Analysis of heat transfer efficiency of R134 refrigerant at shell-side, cooling water at tube-side 103
Chapter 5 Conclusion and recommendations 115
References 118
[1]Coker,A. K. (2014). Ludwig's applied process design for chemical and petrochemical plants. gulf professional publishing.
[2]Serth, R. W. (2010). Process heat transfer. Academic press.
[3]Shah,R. K.,B. Thonon,and D. M. Benforado. "Opportunities for heat exchanger applications in environmental systems." Applied Thermal Engineering 20.7 (2000): 631-650.
[4]Fourier JB. The Analytical Theory of Heat,translated by A Freeman. New York: Dover Publications,Inc.; 1955 (originally published in 1822).
[5]Poling, B. E., Prausnitz, J. M., & O'connell, J. P. (2001). The properties of gases and liquids (Vol. 5). New York: Mcgraw-hill.
[6]Andrew, J. (2015, October). Thomas Newcomen (1664–1729) and the first recorded steam engine. In Proceedings of the Institution of Civil Engineers-Transport (Vol. 168, No. 6, pp. 570-578). Thomas Telford Ltd.
[7]Hills, R. L. (1993). Power from steam: A history of the stationary steam engine. Cambridge University Press.
[8]"Plate Heat exchangers". Gold-Bar Engineering ltd. Retrieved 30 June 2015.
[9]Williams, G. S., Hubbell, C. W., & Fenkell, G. H. (1902). Experiments at Detroit, Mich., on the effect of curvature upon the flow of water in pipes. Transactions of the American Society of Civil Engineers, 47(1), 1-196.
[10]Grindley, J. H., & Gibson, A. H. (1908). On the frictional resistances to the flow of air through a pipe. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 80(536), 114-139.
[11]Eustice, J. (1910). Flow of water in curved pipes. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 84(568), 107-118.
[12]Eustice, J. (1911). Experiments on stream-line motion in curved pipes. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 85(576), 119-131.
[13]Naphon, P., & Wongwises, S. (2006). A review of flow and heat transfer characteristics in curved tubes. Renewable and sustainable energy reviews, 10(5), 463-490.
[14]Roy, K. R., Shenoy, R. N., & Prasad, B. (2012). NUMERICAL ANALYSIS OF FORCED CONVECTIVE HEAT TRANSFER THROUGH HELICAL CHANNELS. International Journal of Engineering Science and Technology, 4(7).
[15]Ferng, Y. M., Lin, W. C., & Chieng, C. C. (2012). Numerically investigated effects of different Dean number and pitch size on flow and heat transfer characteristics in a helically coil-tube heat exchanger. Applied Thermal Engineering, 36, 378-385.
[16]San, J. Y., Worek, W. M., & Lavan, Z. (1987). Second-law analysis of a two-dimensional regenerator. Energy, 12(6), 485-496.
[17]Ju, H., Huang, Z., Xu, Y., Duan, B., & Yu, Y. (2001). Hydraulic performance of small bending radius helical coil-pipe. Journal of Nuclear Science and Technology, 38(10), 826-831.
[18]Taherian, H., & Allen, P. L. (1997). Natural convection from vertical helical coils in a cylindrical enclosure.
[19]Moawed, M. (2005). Experimental investigation of natural convection from vertical and horizontal helicoidal pipes in HVAC applications. Energy conversion and management, 46(18-19), 2996-3013.
[20]Purandare, P. S., Lele, M. M., & Gupta, R. (2012). Parametric analysis of helical coil heat exchanger. ASME Int. J. Eng. Res. Technol, 1(8), 1-5.
[21]Jayakumar, J. S., Mahajani, S. M., Mandal, J. C., Iyer, K. N., & Vijayan, P. K. (2010). CFD analysis of single-phase flows inside helically coiled tubes. Computers & chemical engineering, 34(4), 430-446.
[22]Ashok Reddy, K., Bhavanth Rao, M., & Ram Reddy, P. (2012). Experimental estimation of heat transfer coefficients using helical coil in an agitated vessel. International Journal of Engineering Trends and Technology-Volume3Issue2-2012.
[23]Kakaç, S., Bergles, A. E., & Fernandes, E. O. (Eds.). (2012). Two-phase flow heat exchangers: thermal-hydraulic fundamentals and design (Vol. 143). Springer Science & Business Media.
[24]Shah, R. K., & Sekulic, D. P. (2003). Fundamentals of heat exchanger design. John Wiley & Sons.
[25]Thulukkanam, K. (2013). Heat exchanger design handbook. CRC press.
[26]Reay, D. A., Heat exchangers for waste heat recovery, International Research and Development Co., Ltd.,New Castle upon Tync, U.K., in Developments in Heat Exchanger Technology—1 (D. Chisholm, ed.),Applied Science Publishers Ltd., London, U.K., 1980, pp. 233–256.
[27]King, L. T. (2005). U.S. Patent No. 6,877,552. Washington, DC: U.S. Patent and Trademark Office.
[28]Chisholm, D. (ed.), Developments in Heat Exchanger Technology—1, Applied Science Publishers,London, England, 1980.
[29]Minton, P., Process heat transfer, Proceedings of the 9th International Heat Transfer Conference, Heat Transfer 1990–Jerusalem, Israel, Paper No. KN–2, 1, 355–362 (1990).
[30]Larowski, A., & Taylor, M. A. (1983). Systematic procedure for selection of heat exchangers. Proceedings of the Institution of Mechanical Engineers, Part A: Power and Process Engineering, 197(1), 51-69.
[31]Timmerhaus, K. D., & Flynn, T. M. (2013). Cryogenic process engineering. Springer Science & Business Media.
[32]International Energy Agency (IEA), World Energy Outlook 2013.
[33]BP p. l. c.; BP, BP-Energy-Outlook-2030-China, 2013.
[34]Eddy-viscosity modelling based on nonlinear stress strain/vorticity relations, Proc. 3rd Symp. on Engineering Turbulence Modelling and Measurements, Crete, Greece, 27e29 May, 1996.
電子全文
國圖紙本論文
推文
當script無法執行時可按︰
推文
網路書籤
當script無法執行時可按︰
網路書籤
推薦
當script無法執行時可按︰
推薦
評分
當script無法執行時可按︰
評分
引用網址
當script無法執行時可按︰
引用網址
轉寄
當script無法執行時可按︰
轉寄
推文
推文
推文到facebook
推文到plurk
推文到twitter
Google bookmarks
myshare
reddit
netvibes
top
相關論文
相關期刊
熱門點閱論文
無相關論文
無相關期刊
1.
應用蝕刻不同直徑與金屬鍍層之布拉格光纖光柵於複材應變研究
2.
偏振式光纖感測器
3.
特殊熔射工業管線耐蝕性之研究
4.
雷射輔助蝕刻型長週期光纖光柵之研製及應用
5.
長週期光纖光柵Lab on fiber感測元件研製
6.
全熱交換器效能與節能探討
7.
高分子材料應用於彎曲光纖感測器
8.
複合式傾斜布拉格光纖光柵之研製與應用
9.
光纖光柵加速規之研製
10.
官將首的立體創作與研究
11.
超微小U型回音廊模態光纖感測器之研究
12.
以埋入式布拉格光纖光柵量測薄層複合材料殘餘應變和高應變率動 態響應測試研究
13.
應用田口法於製造短週期光纖光柵最佳化之研究
14.
封裝型長週期光纖光柵之研究
15.
蝕刻型長週期光纖光柵感測器用於溶液檢測研究
簡易查詢
|
進階查詢
|
熱門排行
|
我的研究室