|
[1]Chen, X.; Ma, H.; Wan, J.; Li, B.; and Xia, T. 2017. MultiView 3D Object Detection Network for Autonomous Driving. In CVPR, 1907–1915. [2]Chen, Y.; Liu, S.; Shen, X.; and Jia, J. 2019. Fast Point RCNN. In ICCV, 9775–9784. [3]D., W. D.; W., M. I.; and L., S. R. 2008. Multivariate Probability Distributions. In Mathematical Statistics with Applications, 223–295. Belmont, California: Brooks/Cole, 7 edition. [4]Prarthana Bhattacharyya and Krzysztof Czarnecki. Deformable PV-RCNN: Improving 3D object detection with learned deformations. [5]Graham, B.; Engelcke, M.; and Van Der Maaten, L. 2018. 3D Semantic Segmentation with Submanifold Sparse Convolutional Networks. In CVPR, 9224–9232. [6]Shi, W.; and Rajkumar, R. 2020. Point-GNN: Graph Neural Network for 3D Object Detection in a Point Cloud. In CVPR, 1711–1719. [7]Liu, Z.; Zhao, X.; Huang, T.; Hu, R.; Zhou, Y.; and Bai, X. 2020. TANet: Robust 3D Object Detection from Point Clouds with Triple Attention. In AAAI, 11677–11684. [8]Chenhang He, Hui Zeng, Jianqiang Huang, Xian-Sheng Hua, and Lei Zhang. Structure aware single-stage 3D object detection from point cloud. In CVPR, pages [9]Du, L.; Ye, X.; Tan, X.; Feng, J.; Xu, Z.; Ding, E.; and Wen, S. 2020. Associate-3Ddet: Perceptual-to-Conceptual Association for 3D Point Cloud Object Detection. In CVPR, 13329–13338 [10]Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; and Berg, A. C. 2016. SSD: Single Shot Multibox Detector. In ECCV, 21–37. [11]Kingma, D. P.; and Ba, J. 2014. Adam: A Method for Stochastic Optimization. arXiv preprint arXiv:1412.6980 . [12]Yoo, J. H.; Kim, Y.; Kim, J. S.; and Choi, J. W. 2020. 3DCVF: Generating Joint Camera and LiDAR Features Using Cross-View Spatial Feature Fusion for 3D Object Detection. In ECCV, 720–736. [13]Zhou, D.; Fang, J.; Song, X.; Guan, C.; Yin, J.; Dai, Y.; and Yang, R. 2019. IoU Loss for 2D/3D Object Detection. In 3DV, 85–94. [14]Ming Liang, Bin Yang, Shenlong Wang, and Raquel Urtasun. Deep continuous fusion for multi-sensor 3D object detection. In ECCV, 2018. [15]Shi, S.; Wang, X.; and Li, H. 2019. PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud. In CVPR, 770–779. [16]Charles R. Qi, Wei Liu, Chenxia Wu, Hao Su, and Leonidas J. Guibas. Frustum pointnets for 3D object detection from RGB-D data. CoRR, 2017 [17]Jiang, B.; Luo, R.; Mao, J.; Xiao, T.; and Jiang, Y. 2018. Acquisition of Localization Confidence for Accurate Object Detection. In ECCV, 784–799. [18]Yang, Z.; Sun, Y.; Liu, S.; Shen, X.; and Jia, J. 2019. STD: Sparse-to-Dense 3D Object Detector for Point Cloud. In ICCV, 1951–1960. [19]Shaoshuai Shi, Chaoxu Guo, Li Jiang, Zhe Wang, Jianping Shi, Xiaogang Wang, and Hongsheng Li. PV-RCNN: Pointvoxel feature set abstraction for 3D object detection. In CVPR, pages 10529–10538, 2020 [20]Jin Hyeok Yoo, Yeocheol Kim, Ji Song Kim, and Jun Won Choi. 3D-CVF: Generating joint camera and LiDAR fea9 tures using cross-view spatial feature fusion for 3D object detection. In ECCV, 2020. [21]Su Pang, Daniel Morris, and Hayder Radha. CLOCs: Camera-LiDAR object candidates fusion for 3D object detection. arXiv preprint arXiv:2009.00784, 2020 [22]Zhou, Y.; and Tuzel, O. 2018. Voxelnet: End-to-end Learning for Point Cloud Based 3D Object Detection. In CVPR, 4490–4499 [23]Lang, A. H.; Vora, S.; Caesar, H.; Zhou, L.; Yang, J.; and Beijbom, O. 2019. PointPillars: Fast Encoders for Object Detection from Point Clouds. In CVPR, 12697–12705. [24]Yan, Y.; Mao, Y.; and Li, B. 2018. SECOND: Sparsely Embedded Convolutional Detection. Sensors 18(10): 3337. [25]Weijing Shi and Raj Rajkumar. Point-GNN: Graph neural network for 3D object detection in a point cloud. In CVPR, pages 1711–1719, 2020. [26]Yang, Z.; Sun, Y.; Liu, S.; and Jia, J. 2020. 3DSSD: Pointbased 3D Single Stage Object Detector. In CVPR, 11040– 11048 [27]Wu Zheng, Weiliang Tang, Sijin Chen, Li Jiang, and ChiWing Fu. CIA-SSD: Confident IoU-aware single-stage object detector from point cloud. In AAAI, 2021 [28]Geiger, A.; Lenz, P.; Stiller, C.; and Urtasun, R. 2013. Vision Meets Robotics: The KITTI Dataset. The International Journal of Robotics Research 32(11): 1231–1237. [29]Ku, J.; Mozifian, M.; Lee, J.; Harakeh, A.; and Waslander, S. L. 2018. Joint 3D Proposal Generation and Object Detection from View Aggregation. In IROS, 1–8. [30]Lehner, J.; Mitterecker, A.; Adler, T.; Hofmarcher, M.; Nessler, B.; and Hochreiter, S. 2019. Patch Refinement–Localized 3D Object Detection. arXiv preprint arXiv:1910.04093 . [31]Li, J.; Luo, S.; Zhu, Z.; Dai, H.; Krylov, A. S.; Ding, Y.; and Shao, L. 2020. 3D IoU-Net: IoU Guided 3D Object Detector for Point Clouds. arXiv preprint arXiv:2004.04962 . [32]Liang, M.; Yang, B.; Chen, Y.; Hu, R.; and Urtasun, R. 2019. Multi-task Multi-sensor Fusion for 3D Object Detection. In CVPR, 7345–7353. [33]Liang, M.; Yang, B.; Wang, S.; and Urtasun, R. 2018. Deep Continuous Fusion for Multi-sensor 3D Object Detection. In ECCV, 641–656. [34]Lin, T.-Y.; Goyal, P.; Girshick, R.; He, K.; and Dollar, P. ´ 2017. Focal Loss for Dense Object Detection. In ICCV, 2980–2988. [35]Liu, B.; Wang, M.; Foroosh, H.; Tappen, M.; and Pensky, M. 2015. Sparse Convolutional Neural Networks. In CVPR, 806–814 [36]Loshchilov, I.; and Hutter, F. 2016. SGDR: Stochastic Gradient Descent with Warm Restarts. arXiv preprint arXiv:1608.03983 . [37]Qi, C. R.; Liu, W.; Wu, C.; Su, H.; and Guibas, L. J. 2018. Frustum PointNets for 3D Object Detection from RGB-D Data. In CVPR, 918–927. [38]Qi, C. R.; Yi, L.; Su, H.; and Guibas, L. J. 2017. PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space. In NeurIPS, 5099–5108. [39]Shi, S.; Guo, C.; Jiang, L.; Wang, Z.; Shi, J.; Wang, X.; and Li, H. 2020a. PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection. In CVPR, 10529–10538. [40]Shi, S.; Wang, Z.; Shi, J.; Wang, X.; and Li, H. 2020b. From Points to Parts: 3D Object Detection from Point Cloud with Part-Aware and Part-Aggregation Network. IEEE Transactions on Pattern Analysis and Machine Intelligence . [41]Wang, Z.; and Jia, K. 2019. Frustum ConvNet: Sliding Frustums to Aggregate Local Point-Wise Features for Amodal 3D Object Detection. In IROS, 1742–1749. [42]Xie, L.; Xiang, C.; Yu, Z.; Xu, G.; Yang, Z.; Cai, D.; and He, X. 2020. PI-RCNN: An Efficient Multi-Sensor 3D Object Detector with Point-Based Attentive Cont-Conv Fusion Module. In AAAI, 12460–12467.
|