|
Albawi, S., Mohammed, T., & Al-Zawi, S. (2017). Understanding of a Convolutional Neural Network. International Conference on Engineering and Technology, 1-6. Bochkovskiy, A., Wang, C.-Y., & Liao, M. (2020). YOLOv4: Optimal Speed and Accuracy of Object Detection. doi:10.48550/ARXIV.2004.10934 Borkman, S., Crespi, A., Dhakad, S., Ganguly, S., Hogins, J., Jhang, Y.-C. Parisi, P. (2021). Unity perception: Generate Synthetic Data for Computer Vision. arXiv preprint arXiv:2107.04259. Dehban, A., Borrego, J., Figueiredo, R., Moreno, P., Bernardino, A., & Santos-Victor, J. (2019). The Impact of Domain Randomization on Object Detection: A Case Study on Parametric Shapes and Synthetic Textures. 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2593-2600. Everingham, M., Van Gool, L., Williams, C., Winn, J., & Zisserman, A. (2010). The Pascal Visual Object Classes (VOC) Challenge. International Journal of Computer Vision, 88, 303-338. Geiger, A., Lenz, P., & Urtasun, R. (2012). Are We Ready for Autonomous Driving? The KITTI Vision Benchmark Suite. 2012 IEEE Conference on Computer Vision and Pattern Recognition (pp. 3354-3361). IEEE. He, K., Zhang, X., Ren, S., & Sun, J. (2015). Spatial PYramid Pooling in Deep Convolutional Networks for Visual Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(9), 1904-1916. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 770-778). Helm, J., Swiergosz, A., Haeberle, H., Karnuta, J., Schaffer, J., Krebs, V., Ramkumar, P. (2020). Machine Learning and Artificial Intelligence: Definitions, Applications, and Future Directions. Current Reviews in Musculoskeletal Medicine, 13(1), 69-76. Li, F., & Xi, Q.-G. (2021). DefectNet: Toward Fast and Effective Defect Detection. IEEE Transactions on Instrumentation and Measurement, 70, 1-9. Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Zitnick, C. (2014). Microsoft coco: Common Objects in Context. European Conference on Computer Vision, 740-755. Liu, S., Qi, L., Qin, H., Shi, J., & Jia, J. (2018). Path Aggregation Network for Instance Segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (pp. 8759-8768). McCormac, J., Handa, A., Leutenegger, S., & Davison, A. (2016). SceneNet RGB-D: 5M Photorealistic Images of Synthetic Indoor Trajectories with Ground Truth. arXiv 1612.05079. Michaelis, C., Mitzkus, B., Geirhos, R., Rusak, E., Bringmann, O., Ecker, A., Brendel, W. (2019). Benchmarking Robustness in Object Detection: Autonomous Driving when Winter. arXiv preprint arXiv:1907.07484. O'Shea, K., & Nash, R. (2015). Am Introduction to Convolutional Neural Networks. doi:10.48550/ARXIV.1511.08458 Redmon, J., Divvala, S., Girschick, R., & Farhadi, A. (2015). You Only Look Once: Unified, Real-Time Object Detection. doi:10.48550/ARXIV.1506.02640 Reinhard, E., Heidrich, W., Debevec, P., Pattanaik, S., Ward, G., & Myszkowski, K. (2010). High Dynamic Range Imaging: Acquisition, Displaym and Image-Based Lighting. Morgan Kaufmann. Roboflow Inc. (2022). Roboflow. Roboflow, Inc. (2020). Roboflow Annotate. Technologies, U. (n.d.). Unity: High Definition Render Pipelines. Retrieved from https://docs.unity3d.com/Packages/com.unity.render-pipelines.high-definition\@14.0 Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W., & Abbeel , P. (2017). Domain Randomization for Transferring Deep Neural Networks from Simulation to the Real World. 2017 IEEE/RSJ international conference on intelligent robots and systems, 23-30. Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., Birchfield, S. (2018). Training Deep Networks with Synthetic Data: Bridging the Reality Gap by Domain Randomization. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 1082-1090. Wang, C.-Y., Bochkovskiy, A., & Mark, H.-Y. (2022). YOLOv7: Trainable Bag-Of-Freebies Sets New State-Of-The-Art for Real-Time Object Detectors. arXiv preprint arXiv:2207.02696. Wang, C.-Y., Liao, M., Wu, Y.-H., Chen, P.-Y., Hsieh, J.-W., & Yeh, I.-H. (2020). CSPNet: A New Backbone That Can Enhance Learning Capability of CNN. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (pp. 390-391). Wu, B., Wan, A., Iandola, F., Jin, P., & Keutzer, K. (2017). SqueezeDet: Unified, Small, Low Power Fully Convolutional Neural Networks for Real-Time Object Detection for Autonomous Driving. 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops, 446-454. Zeng, N., Wu, P.-S., Wang, Z.-D., Li, H., Liu, W., & Liu, X. (2022). A Small-Sized Object Detection Oriented Multi-Scale Feature Fusion Approach with Application to Defect Detection. IEEE Transactions on Instrumentation and Measurement, 71, 1-14. Zhao, H., Zhang, Y., Liu, S., Shi, J., Loy, C., Lin, D., & Jia, J. (2018). PSANet: Point-Wise Spatial Attention Network for Scene Parsing. Proceedings of the European Conference on Computer Vision, (pp. 267-283). Zhao, Z.-Q., Zheng, P., Xu, S.-t., & Wu, X. (2019). Object Detection with Deep Learning: A Review. IEEE Transactions on Neural Networks and Learning Systems, 30(11), 3212-3232.
|