|
[1] A.F. Rogers, Delafossite, a cuprous metaferrite from Bisbee, Arizona, Am. J. Sci. 35 (1913) 290-294. [2] M.A. Marquardt, N.A. Ashmore, D.P. Cann, Crystal chemistry and electrical properties of the delafossite structure, Thin Solid Films 496(1) (2006) 146-156. [3] J. Topfer, M. Trari, P. Gravereau, J. Chaminade, J. Doumerc, Crystal growth and reinvestigation of the crystal structure of crednerite, CuMnO2, Z. Kristallogr. Kristallgeom. 210(3) (1995) 184-187. [4] B. Bellal, B. Hadjarab, N. Benreguia, Y. Bessekhouad, M. Trari, Photoelectrochemical characterization of the synthetic crednerite CuMnO2, J. Appl. Electrochem. 41(7) (2011) 867-872. [5] Y. Bessekhouad, Y. Gabes, A. Bouguelia, M. Trari, The physical and photo electrochemical characterization of the crednerite CuMnO2, J. Mater. Sci. 42(15) (2007) 6469-6476. [6] F.C.M. Driessens, G.D. Rieck, Phase Equilibria in the System Cu-Mn-O, Z. Anorg. Allg. Chem. 351(1‐2) (1967) 48-62. [7] Y.V. Golikov, L. Ovchinnikova, I. Dubrovina, Phase diagram of the Cu-Mn-O system, Inorg. Mater. 30(10) (1994). [8] F. Damay, M. Poienar, C. Martin, A. Maignan, J. Rodriguez-Carvajal, G. André, J.P. Doumerc, Spin-lattice coupling induced phase transition in theS=2frustrated antiferromagnetCuMnO2, Phys. Rev. B 80(9) (2009). [9] J. Conradie, Jahn-Teller effect in high spin d4 and d9 octahedral metal-complexes, Inorg. Chim. Acta 486 (2019) 193-199. [10] H.A. Jahn, E. Teller, Stability of polyatomic molecules in degenerate electronic states - I—Orbital degeneracy, P Roy Soc A-Math Phy 161(905) (1937) 220-235. [11] G. Ceder, A. Van der Ven, C. Marianetti, D. Morgan, First-principles alloy theory in oxides, Modell. Simul. Mater. Sci. Eng. 8(3) (2000) 311. [12] 游鍚雁, 陳文章, 分子/無機鍵結方式對其形態及特性應用之影響, 界面科學化工運用專輯 (2006) 121-128. [13] 田佩, 周禮君, 有機無機混成溶凝膠及其應用, 強化塑膠 (1997) 24-35. [14] H. Bach, D. Krause, Thin Films on Glass, Springer Science & Business Media2003. [15] J. Zha, H. Roggendorf, Sol–gel science, the physics and chemistry of sol–gel processing, Sci. Technol. Adv. Mater. 3(10) (1991) 522-522. [16] I.A. Neacşu, A.I. Nicoară, O.R. Vasile, B.Ş. Vasile, Inorganic micro- and nanostructured implants for tissue engineering, 4 (2016) 271-295. [17] P. Kajal, K. Ghosh, S. Powar, Manufacturing Techniques of Perovskite Solar Cells, (2018) 341-364. [18] P. Sahoo, S.K. Das, J. Paulo Davim, 3.3 Surface Finish Coatings, Reference Module in Materials Science and Materials Engineering 3 (2017) 38-55. [19] N. Sahu, B. Parija, S. Panigrahi, Fundamental understanding and modeling of spin coating process: A review, Indian J. Phys. 83(4) (2009) 493-502. [20] G. Amokrane, C. Falentin-Daudré, S. Ramtani, V. Migonney, A Simple Method to Functionalize PCL Surface by Grafting Bioactive Polymers Using UV Irradiation, Irbm 39(4) (2018) 268-278. [21] J.-P. Doumerc, M. Trari, J. Töpfer, L. Fournes, J.-C. Grenier, Magnetic properties of the crednerite CuMnO2, Eur. J. Solid State Inorg. Chem. 31(8-9) (1994) 705-715. [22] Y. Bessekhouad, M. Trari, J.P. Doumerc, CuMnO2, a novel hydrogen photoevolution catalyst, Int. J. Hydrogen Energy 28(1) (2003) 43-48. [23] M. Trari, J. Töpfer, P. Dordor, J.C. Grenier, M. Pouchard, J.P. Doumerc, Preparation and physical properties of the solid solutions Cu1+xMn1−xO2 (0⩽x⩽0.2), J. Solid State Chem. 178(9) (2005) 2751-2758. [24] C. Vecchini, M. Poienar, F. Damay, O. Adamopoulos, A. Daoud-Aladine, A. Lappas, J.M. Perez-Mato, L.C. Chapon, C. Martin, Magnetoelastic coupling in the frustrated antiferromagnetic triangular latticeCuMnO2, Phys. Rev. B: Condens. Matter 82(9) (2010). [25] N. Terada, Y. Tsuchiya, H. Kitazawa, T. Osakabe, N. Metoki, N. Igawa, K. Ohoyama, Magnetic correlations and the influence of atomic disorder in frustrated isosceles triangular lattice antiferromagnet CuMnO2, Phys. Rev. B: Condens. Matter 84(6) (2011). [26] C.-C. Hsieh, C.-S. Hwang, C.-H. Kuo, X.-d. Qi, C.-L. Hsiao, Fabrication and thermoelectric properties of CuMn1+xO2 (x=0~0.2) ceramics, Ceram. Int. 41(9) (2015) 12303-12309. [27] K.K. Shukla, R. Singh, A. Kumar, A.K. Ghosh, S. Chatterjee, Griffith-like phase in Crednerite CuMnO2, Mater. Res. Bull. 91 (2017) 135-139. [28] A. Kurokawa, T. Yanoh, S. Yano, Y. Ichiyanagi, Preparation and magnetic properties of multiferroic CuMnO2 nanoparticles, J. Nanosci. Nanotechnol. 14(3) (2014) 2553-6. [29] Q. Zhang, D. Xiong, H. Li, D. Xia, H. Tao, X. Zhao, A facile hydrothermal route to synthesize delafossite CuMnO2 nanocrystals, J. Mater. Sci. Mater. Electron. 26(12) (2015) 10159-10163. [30] L. Wang, M. Arif, G. Duan, S. Chen, X. Liu, A high performance quasi-solid-state supercapacitor based on CuMnO2 nanoparticles, J. Power Sources 355 (2017) 53-61. [31] N. Benreguia, A. Barnabé, M. Trari, Preparation and characterization of the semiconductor CuMnO2 by sol-gel route, Mater. Sci. Semicond. Process. 56 (2016) 14-19. [32] M. Poienar, R. Banica, P. Sfirloaga, C. Ianasi, C.V. Mihali, P. Vlazan, Microwave-assisted hydrothermal synthesis and catalytic activity study of crednerite-type CuMnO2 materials, Ceram. Int. 44(6) (2018) 6157-6161. [33] L.B. Mao, S. Mohan, Y.B. Mao, Delafossite CuMnO2 as an Efficient Bifunctional Oxygen and Hydrogen Evolution Reaction Electrocatalyst for Water Splitting, J. Electrochem. Soc. 166(6) (2019) H233-H242. [34] H. Hiraga, T. Fukumura, A. Ohtomo, T. Makino, A. Ohkubo, H. Kimura, M. Kawasaki, Optical and magnetic properties of CuMnO2 epitaxial thin films with a delafossite-derivative structure, Appl. Phys. Lett. 95(3) (2009) 032109. [35] H.-Y. Chen, D.-J. Hsu, Characterization of crednerite-Cu1.1Mn0.9O2 films prepared using sol–gel processing, Appl. Surf. Sci. 290 (2014) 161-166. [36] H.-Y. Chen, Y.-C. Lin, J.-S. Lee, Crednerite-CuMnO2 thin films prepared using atmospheric pressure plasma annealing, Appl. Surf. Sci. 338 (2015) 113-119. [37] D. Xiong, Q. Zhang, Z. Du, S.K. Verma, H. Li, X. Zhao, Low temperature hydrothermal synthesis mechanism and thermal stability of p-type CuMnO2 nanocrystals, New J. Chem. 40(7) (2016) 6498-6504. [38] T. Runka, M. Berkowski, Perovskite La1−x Sr x Ga1−y Mn y O3 solid solution crystals: Raman spectroscopy characterization, J. Mater. Sci. 47(14) (2012) 5393-5401. [39] H. Hiraga, T. Makino, T. Fukumura, H. Weng, M. Kawasaki, Electronic structure of the delafossite-type CuMO2(M=Sc, Cr, Mn, Fe, and Co): Optical absorption measurements and first-principles calculations, Phys. Rev. B: Condens. Matter 84(4) (2011). [40] J. Gautier, E. Rios, M. Gracia, J. Marco, J. Gancedo, Characterisation by X-ray photoelectron spectroscopy of thin MnxCo3− xO4 (1≥ x≥ 0) spinel films prepared by low-temperature spray pyrolysis, Thin Solid Films 311(1-2) (1997) 51-57. [41] B. Gillot, S. Buguet, E. Kester, C. Baubet, P. Tailhades, Cation valencies and distribution in the spinels CoxCuyMnzFeuO4+ δ (δ≥ 0) thin films studied by X-ray photoelectron spectroscopy, Thin Solid Films 357(2) (1999) 223-231. [42] T.K. Le, D. Flahaut, H. Martinez, N. Andreu, D. Gonbeau, E. Pachoud, D. Pelloquin, A. Maignan, The electronic structure of the CuRh1−xMgxO2 thermoelectric materials: An X-ray photoelectron spectroscopy study, J. Solid State Chem. 184(9) (2011) 2387-2392. [43] J.S. McCloy, C. Leslie, T. Kaspar, W. Jiang, R.K. Bordia, Magnetic behavior of Ni and Co doped CuMn2O4 spinels, J. Appl. Phys. 111(7) (2012) 07E149. [44] H.-Y. Chen, D.-J. Hsu, X-ray photoelectron spectroscopy studies the cation valencies and distributions in crednerite-Cu1.1Mn0.9O2 thin films, J. Alloys Compd. 598 (2014) 23-26. [45] S. Fu, L. Li, Y. Jing, Y. Zhang, X. Wang, S. Fang, J. Wang, G. Li, Crystal Growth of Bimetallic Oxides CuMnO2 with Tailored Valence States for Optimum Electrochemical Energy Storage, Cryst. Growth Des. 18(10) (2018) 6107-6116. [46] S. Fu, L. Li, Y. Jing, Y. Zhang, X. Wang, S. Fang, J. Wang, G. Li, Crystal Growth of Bimetallic Oxides CuMnO2 with Tailored Valence States for Optimum Electrochemical Energy Storage, Crystal Growth & Design 18(10) (2018) 6107-6116. [47] R.X. Chen, S.L. Zhu, J. Mao, Z.D. Cui, X.J. Yang, Y.Q. Liang, Z.Y. Li, Synthesis of CuO/Co3O4Coaxial Heterostructures for Efficient and Recycling Photodegradation, Int. J. Photoenergy 2015 (2015) 1-11. [48] A. Waskowska, L. Gerward, J.S. Olsen, S. Steenstrup, E. Talik, CuMn2O4: properties and the high-pressure induced Jahn-Teller phase transition, J. Phys.: Condens. Matter 13(11) (2001) 2549.
|