|
1.Robertson, J., et al., Mortality in people with intellectual disabilities and epilepsy: A systematic review. Seizure - European Journal of Epilepsy, 2015. 29: p. 123-133. 2.Forsgren, L., et al., Mortality of epilepsy in developed countries: a review. Epilepsia, 2005. 46 Suppl 11: p. 18-27. 3.Chen, C.C., et al., Population-based survey on prevalence of adult patients with epilepsy in Taiwan (Keelung community-based integrated screening no. 12). Epilepsy Res, 2006. 72(1): p. 67-74. 4.Devinsky, O., et al., Recognizing and preventing epilepsy-related mortality: A call for action. Neurology, 2016. 86(8): p. 779-86. 5.Begley, C.E., et al., The cost of epilepsy in the United States: an estimate from population-based clinical and survey data. Epilepsia, 2000. 41(3): p. 342-51. 6.Begley, C.E., et al., Early treatment cost in epilepsy and how it varies with seizure type and frequency. Epilepsy Res, 2001. 47(3): p. 205-15. 7.Simoens, S., Pharmacoeconomics of anti-epileptic drugs as adjunctive therapy for refractory epilepsy. Expert Rev Pharmacoecon Outcomes Res, 2010. 10(3): p. 309-15. 8.Koshal, P., S. Jamwal, and P. Kumar, Glucagon-like Peptide-1 (GLP-1) and neurotransmitters signaling in epilepsy: An insight review. Neuropharmacology, 2017. 9.Berg, A.T., H.H. Altalib, and O. Devinsky, Psychiatric and behavioral comorbidities in epilepsy: A critical reappraisal. Epilepsia, 2017. 58(7): p. 1123-1130. 10.Ivanova, J.I., et al., Direct and indirect costs associated with epileptic partial onset seizures among the privately insured in the United States. Epilepsia, 2010. 51(5): p. 838-44. 11.Nehra, A., et al., Inverse relationship between stigma and quality of life in India: is epilepsy a disabling neurological condition? Epilepsy Behav, 2014. 39: p. 116-25. 12.Stephen, L.J. and M.J. Brodie, Seizure freedom with more than one antiepileptic drug. Seizure, 2002. 11(6): p. 349-351. 13.Scheffer, I.E., et al., ILAE classification of the epilepsies: Position paper of the ILAE Commission for Classification and Terminology. Epilepsia, 2017. 58(4): p. 512-521. 14.Brodie, M.J., et al., The 2017 ILAE classification of seizure types and the epilepsies: what do people with epilepsy and their caregivers need to know? Epileptic Disord, 2018. 20(2): p. 77-87. 15.Stafstrom, C.E. and L. Carmant, Seizures and epilepsy: an overview for neuroscientists. Cold Spring Harb Perspect Med, 2015. 5(6). 16.Biraben, A., et al., Fear as the main feature of epileptic seizures. J Neurol Neurosurg Psychiatry, 2001. 70(2): p. 186-91. 17.van Rijckevorsel, K., Cognitive problems related to epilepsy syndromes, especially malignant epilepsies. Seizure, 2006. 15(4): p. 227-34. 18.Wiegartz, P., et al., Co-morbid psychiatric disorder in chronic epilepsy: recognition and etiology of depression. Neurology, 1999. 53(5 Suppl 2): p. S3-8. 19.Glauser, T., et al., Updated ILAE evidence review of antiepileptic drug efficacy and effectiveness as initial monotherapy for epileptic seizures and syndromes. Epilepsia, 2013. 54(3): p. 551-63. 20.Engel, J., Jr., et al., Practice parameter: temporal lobe and localized neocortical resections for epilepsy: report of the Quality Standards Subcommittee of the American Academy of Neurology, in association with the American Epilepsy Society and the American Association of Neurological Surgeons. Neurology, 2003. 60(4): p. 538-47. 21.Jackson, M.J., Concise guidance: diagnosis and management of the epilepsies in adults. Clin Med (Lond), 2014. 14(4): p. 422-7. 22.Nunes, V.D., et al., Diagnosis and management of the epilepsies in adults and children: summary of updated NICE guidance. BMJ, 2012. 344: p. e281. 23.Watanabe, M., et al., GABA and GABA receptors in the central nervous system and other organs. Int Rev Cytol, 2002. 213: p. 1-47. 24.Greenamyre, J.T. and R.H. Porter, Anatomy and physiology of glutamate in the CNS. Neurology, 1994. 44(11 Suppl 8): p. S7-13. 25.Weiler, I.J., N. Hawrylak, and W.T. Greenough, Morphogenesis in memory formation: synaptic and cellular mechanisms. Behav Brain Res, 1995. 66(1-2): p. 1-6. 26.Rosenberg, S.S. and N.C. Spitzer, Calcium signaling in neuronal development. Cold Spring Harb Perspect Biol, 2011. 3(10): p. a004259. 27.Barnham, K.J., C.L. Masters, and A.I. Bush, Neurodegenerative diseases and oxidative stress. Nat Rev Drug Discov, 2004. 3(3): p. 205-14. 28.Brookes, P.S., et al., Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am J Physiol Cell Physiol, 2004. 287(4): p. C817-33. 29.Kong, Q. and C.L. Lin, Oxidative damage to RNA: mechanisms, consequences, and diseases. Cell Mol Life Sci, 2010. 67(11): p. 1817-29. 30.Roos, W.P. and B. Kaina, DNA damage-induced cell death: from specific DNA lesions to the DNA damage response and apoptosis. Cancer Lett, 2013. 332(2): p. 237-48. 31.Chen, Y., et al., Effect of lamotrigine on seizure development in a rat pentylenetetrazole kindling model. Brain Behav, 2017. 7(7): p. e00727. 32.Zhu, Y., et al., Anticonvulsant Effects of Dingxian Pill in Pentylenetetrazol-Kindled Rats. Evid Based Complement Alternat Med, 2019. 2019: p. 4534167. 33.Gao, B., et al., Sinomenine exerts anticonvulsant profile and neuroprotective activity in pentylenetetrazole kindled rats: involvement of inhibition of NLRP1 inflammasome. Journal of Neuroinflammation, 2018. 15(1): p. 152. 34.Huang, R.-Q., et al., Pentylenetetrazole-Induced Inhibition of Recombinant γ-Aminobutyric Acid Type A (GABAA) Receptors: Mechanism and Site of Action. Journal of Pharmacology and Experimental Therapeutics, 2001. 298(3): p. 986-995. 35.de Souza, A.G., et al., Prevention of pentylenetetrazole-induced kindling and behavioral comorbidities in mice by levetiracetam combined with the GLP-1 agonist liraglutide: Involvement of brain antioxidant and BDNF upregulating properties. Biomed Pharmacother, 2019. 109: p. 429-439. 36.Sajadian, A., et al., Anticonvulsant effect of neural regeneration peptide 2945 on pentylenetetrazol-induced seizures in rats. Neuropeptides, 2015. 49: p. 15-23. 37.Zhu, X., et al., Neuronal nitric oxide synthase contributes to pentylenetetrazole-kindling-induced hippocampal neurogenesis. Brain Res Bull, 2016. 121: p. 138-47. 38.Saha, L., et al., Anti-kindling Effect of Bezafibrate, a Peroxisome Proliferator-activated Receptors Alpha Agonist, in Pentylenetetrazole Induced Kindling Seizure Model. J Epilepsy Res, 2014. 4(2): p. 45-54. 39.Johannessen, C.U. and S.I. Johannessen, Valproate: past, present, and future. CNS Drug Rev, 2003. 9(2): p. 199-216. 40.Ximenes, J.C., et al., Valproic Acid Neuroprotection in the 6-OHDA Model of Parkinson's Disease Is Possibly Related to Its Anti-Inflammatory and HDAC Inhibitory Properties. J Neurodegener Dis, 2015. 2015: p. 313702. 41.Monti, B., E. Polazzi, and A. Contestabile, Biochemical, molecular and epigenetic mechanisms of valproic acid neuroprotection. Curr Mol Pharmacol, 2009. 2(1): p. 95-109. 42.Silva, M.R., et al., Neuroprotective effects of valproic acid on brain ischemia are related to its HDAC and GSK3 inhibitions. Pharmacol Biochem Behav, 2018. 167: p. 17-28. 43.Long, Z.M., et al., Valproic Acid Modifies Synaptic Structure and Accelerates Neurite Outgrowth Via the Glycogen Synthase Kinase-3β Signaling Pathway in an Alzheimer's Disease Model. CNS Neurosci Ther, 2015. 21(11): p. 887-97. 44.Varela, R.B., et al., Sodium butyrate and mood stabilizers block ouabain-induced hyperlocomotion and increase BDNF, NGF and GDNF levels in brain of Wistar rats. Journal of Psychiatric Research, 2015. 61: p. 114-121. 45.Zhang, L., et al., Valproic Acid Promotes Survival of Facial Motor Neurons in Adult Rats After Facial Nerve Transection: a Pilot Study. J Mol Neurosci, 2018. 64(4): p. 512-522. 46.Lotfy, D.M., et al., Effect of valproic acid alone or combined with low dose gamma irradiation in modulating PTZ-induced convulsions in rats involving AKT/m-TOR pathway. Life Sci, 2018. 212: p. 261-266. 47.Savina, T.A., O.A. Balashova, and T.G. Shchipakina, Effect of chronic consumption of sodium valproate and melatonin on seizure activity in Krushinskii-Molodkina rats. Bull Exp Biol Med, 2006. 142(5): p. 601-4. 48.Koh, M.T., et al., Treatment Strategies Targeting Excess Hippocampal Activity Benefit Aged Rats with Cognitive Impairment. Neuropsychopharmacology, 2010. 35(4): p. 1016-1025. 49.Sheng, F., et al., Protective Effects of Otophylloside N on Pentylenetetrazol-Induced Neuronal Injury In vitro and In vivo. Front Pharmacol, 2016. 7: p. 224. 50.Schmidt, D., The clinical impact of new antiepileptic drugs after a decade of use in epilepsy. Epilepsy Res, 2002. 50(1-2): p. 21-32. 51.Hussein, A.M., et al., Beta Lactams Antibiotic Ceftriaxone Modulates Seizures, Oxidative Stress and Connexin 43 Expression in Hippocampus of Pentylenetetrazole Kindled Rats. J Epilepsy Res, 2016. 6(1): p. 8-15. 52.Nadkarni, S. and O. Devinsky, Psychotropic effects of antiepileptic drugs. Epilepsy Curr, 2005. 5(5): p. 176-81. 53.Nau, R., F. Sörgel, and H. Eiffert, Penetration of drugs through the blood-cerebrospinal fluid/blood-brain barrier for treatment of central nervous system infections. Clin Microbiol Rev, 2010. 23(4): p. 858-83. 54.Rothstein, J.D., et al., Beta-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature, 2005. 433(7021): p. 73-7. 55.Gunduz, O., C. Oltulu, and A. Ulugol, Role of GLT-1 transporter activation in prevention of cannabinoid tolerance by the beta-lactam antibiotic, ceftriaxone, in mice. Pharmacol Biochem Behav, 2011. 99(1): p. 100-3. 56.Tikhonova, M.A., et al., Neuroprotective effects of ceftriaxone treatment on cognitive and neuronal deficits in a rat model of accelerated senescence. Behav Brain Res, 2017. 330: p. 8-16. 57.Tai, C.H., et al., A new avenue for treating neuronal diseases: Ceftriaxone, an old antibiotic demonstrating behavioral neuronal effects. Behav Brain Res, 2019. 364: p. 149-156. 58.Soni, N., et al., Effect of GLT-1 modulator and P2X7 antagonists alone and in combination in the kindling model of epilepsy in rats. Epilepsy Behav, 2015. 48: p. 4-14. 59.Hu, Y.Y., et al., Ceftriaxone modulates uptake activity of glial glutamate transporter-1 against global brain ischemia in rats. J Neurochem, 2015. 132(2): p. 194-205. 60.Chotibut, T., et al., Ceftriaxone increases glutamate uptake and reduces striatal tyrosine hydroxylase loss in 6-OHDA Parkinson's model. Mol Neurobiol, 2014. 49(3): p. 1282-92. 61.Bellesi, M., et al., Reduction of EEG theta power and changes in motor activity in rats treated with ceftriaxone. PLoS One, 2012. 7(3): p. e34139. 62.Chu, K., et al., Pharmacological Induction of Ischemic Tolerance by Glutamate Transporter-1 (EAAT2) Upregulation. Stroke, 2007. 38(1): p. 177-82. 63.Bisht, R., et al., Ceftriaxone mediated rescue of nigral oxidative damage and motor deficits in MPTP model of Parkinson's disease in rats. Neurotoxicology, 2014. 44: p. 71-9. 64.Kelsey, J.E. and C. Neville, The effects of the beta-lactam antibiotic, ceftriaxone, on forepaw stepping and L-DOPA-induced dyskinesia in a rodent model of Parkinson's disease. Psychopharmacology (Berl), 2014. 231(12): p. 2405-15. 65.Sharma, A., Seizures and epilepsy in children. Indian J Pediatr, 2013. 80(11): p. 925-35. 66.Ferre, P., et al., Postnatal handling reduces anxiety as measured by emotionality rating and hyponeophagia tests in female rats. Pharmacol Biochem Behav, 1995. 51(2-3): p. 199-203. 67.Taupin, P., BrdU immunohistochemistry for studying adult neurogenesis: paradigms, pitfalls, limitations, and validation. Brain Res Rev, 2007. 53(1): p. 198-214. 68.Voss, J., et al., Rotarod studies in the rat of the GABAA receptor agonist gaboxadol: lack of ethanol potentiation and benzodiazepine cross-tolerance. Eur J Pharmacol, 2003. 482(1-3): p. 215-22. 69.Cevik, B., et al., Neuroprotective effects of erythropoietin on Alzheimer's dementia model in rats. Adv Clin Exp Med, 2017. 26(1): p. 23-29. 70.Hsu, C.Y., et al., Ceftriaxone prevents and reverses behavioral and neuronal deficits in an MPTP-induced animal model of Parkinson's disease dementia. Neuropharmacology, 2015. 91: p. 43-56. 71.Sy, H.N., et al., MPTP-induced dopaminergic degeneration and deficits in object recognition in rats are accompanied by neuroinflammation in the hippocampus. Pharmacol Biochem Behav, 2010. 95(2): p. 158-65. 72.Hsieh, M.H., et al., Effects of MK-801 on recognition and neurodegeneration in an MPTP-induced Parkinson's rat model. Behav Brain Res, 2012. 229(1): p. 41-7. 73.Liu, H., et al., Role of phosphorylated ERK in amygdala neuronal apoptosis in single-prolonged stress rats. Mol Med Rep, 2010. 3(6): p. 1059-63. 74.Liu, Z.C., et al., Dynamic protein expression of NF-κB following rat intracerebral hemorrhage and its association with apoptosis. Exp Ther Med, 2018. 16(5): p. 3903-3908. 75.Dhir, A., Pentylenetetrazol (PTZ) kindling model of epilepsy. Curr Protoc Neurosci, 2012. Chapter 9: p. Unit9 37. 76.Kandratavicius, L., et al., Animal models of epilepsy: use and limitations. Neuropsychiatr Dis Treat, 2014. 10: p. 1693-705. 77.Rocha, L., et al., Pentylenetetrazol-induced kindling: early involvement of excitatory and inhibitory systems. Epilepsy Res, 1996. 26(1): p. 105-13. 78.Corda, M.G., et al., Pentylenetetrazol-induced kindling in rats: effect of GABA function inhibitors. Pharmacol Biochem Behav, 1991. 40(2): p. 329-33. 79.Ramsay, R.E. and J. DeToledo, Tonic-clonic seizures: a systematic review of antiepilepsy drug efficacy and safety. Clin Ther, 1997. 19(3): p. 433-46; discussion 367-8. 80.Gerbatin, R.R., et al., Delayed creatine supplementation counteracts reduction of GABAergic function and protects against seizures susceptibility after traumatic brain injury in rats. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2019. 92: p. 328-338. 81.Coras, R. and I. Blümcke, Clinico-pathological subtypes of hippocampal sclerosis in temporal lobe epilepsy and their differential impact on memory impairment. Neuroscience, 2015. 309: p. 153-161. 82.Kullmann, D.M., What's wrong with the amygdala in temporal lobe epilepsy? Brain, 2011. 134(Pt 10): p. 2800-1. 83.Reyes, A., et al., Amygdala enlargement: Temporal lobe epilepsy subtype or nonspecific finding? Epilepsy Res, 2017. 132: p. 34-40. 84.Akman, O., et al., The role of the substantia nigra pars reticulata in kindling resistance in rats with genetic absence epilepsy. Epilepsia, 2015. 56(11): p. 1793-802. 85.Goldenberg, M.M., Overview of drugs used for epilepsy and seizures: etiology, diagnosis, and treatment. P t, 2010. 35(7): p. 392-415. 86.Beckung, E. and P. Uvebrant, Hidden dysfunction in childhood epilepsy. Dev Med Child Neurol, 1997. 39(2): p. 72-8. 87.Sullivan, E.V., et al., Pontocerebellar contribution to postural instability and psychomotor slowing in HIV infection without dementia. Brain Imaging Behav, 2011. 5(1): p. 12-24. 88.Shiotsuki, H., et al., A rotarod test for evaluation of motor skill learning. J Neurosci Methods, 2010. 189(2): p. 180-5. 89.Glisky, E.L., Frontiers in Neuroscience Changes in Cognitive Function in Human Aging, in Brain Aging: Models, Methods, and Mechanisms, D.R. Riddle, Editor. 2007, CRC Press/Taylor & Francis Taylor & Francis Group, LLC.: Boca Raton (FL). 90.Baddeley, A., et al., Dementia and working memory. Q J Exp Psychol A, 1986. 38(4): p. 603-18. 91.Adda, C.C., et al., Prospective memory and mesial temporal epilepsy associated with hippocampal sclerosis. Neuropsychologia, 2008. 46(7): p. 1954-64. 92.Holmes, G.L., Cognitive impairment in epilepsy: the role of network abnormalities. Epileptic Disord, 2015. 17(2): p. 101-16. 93.Nassiri-Asl, M., et al., The effects of rutin on a passive avoidance test in rats. Prog Neuropsychopharmacol Biol Psychiatry, 2010. 34(1): p. 204-7. 94.Black, L.C., et al., The effect of seizures on working memory and executive functioning performance. Epilepsy Behav, 2010. 17(3): p. 412-9. 95.Thompson, P.J. and R. Corcoran, Everyday memory failures in people with epilepsy. Epilepsia, 1992. 33 Suppl 6: p. S18-20. 96.Butler, C.R. and A.Z. Zeman, Recent insights into the impairment of memory in epilepsy: transient epileptic amnesia, accelerated long-term forgetting and remote memory impairment. Brain, 2008. 131(Pt 9): p. 2243-63. 97.Butler, C.R., et al., Transient epileptic amnesia: regional brain atrophy and its relationship to memory deficits. Brain, 2009. 132(Pt 2): p. 357-68. 98.Vannest, J., et al., Age related-changes in the neural basis of self-generation in verbal paired associate learning. Neuroimage Clin, 2015. 7: p. 537-46. 99.Pohlmann-Eden, B., et al., The relevance of neuropsychiatric symptoms and cognitive problems in new-onset epilepsy - Current knowledge and understanding. Epilepsy Behav, 2015. 51: p. 199-209. 100.Eliassen, J.C., S.K. Holland, and J.P. Szaflarski, Compensatory brain activation for recognition memory in patients with medication-resistant epilepsy. Epilepsy Behav, 2008. 13(3): p. 463-9. 101.Mumby, D.G., et al., Hippocampal damage and exploratory preferences in rats: memory for objects, places, and contexts. Learn Mem, 2002. 9(2): p. 49-57. 102.Adolph, K.E. and J.M. Franchak, The development of motor behavior. Wiley interdisciplinary reviews. Cognitive science, 2017. 8(1-2): p. 10.1002/wcs.1430. 103.Giorgi, F.S., A.S. Galanopoulou, and S.L. Moshe, Sex dimorphism in seizure-controlling networks. Neurobiol Dis, 2014. 72 Pt B: p. 144-52. 104.Veliskova, J. and S.L. Moshe, Update on the role of substantia nigra pars reticulata in the regulation of seizures. Epilepsy Curr, 2006. 6(3): p. 83-7. 105.Parent, A. and L.N. Hazrati, Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res Brain Res Rev, 1995. 20(1): p. 91-127. 106.Gonzalez-Hernandez, T. and M. Rodriguez, Compartmental organization and chemical profile of dopaminergic and GABAergic neurons in the substantia nigra of the rat. J Comp Neurol, 2000. 421(1): p. 107-35. 107.Veliskova, J., et al., The expression of GABA(A) receptor subunits in the substantia nigra is developmentally regulated and region-specific. Ital J Neurol Sci, 1998. 19(4): p. 205-10. 108.Squire, L.R., Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychol Rev, 1992. 99(2): p. 195-231. 109.Gilbert, P.E. and A.M. Brushfield, The role of the CA3 hippocampal subregion in spatial memory: a process oriented behavioral assessment. Prog Neuropsychopharmacol Biol Psychiatry, 2009. 33(5): p. 774-81. 110.Anand, K.S. and V. Dhikav, Hippocampus in health and disease: An overview. Ann Indian Acad Neurol, 2012. 15(4): p. 239-46. 111.Jeong, Y., et al., Role of the hippocampal CA1 region in incremental value learning. Sci Rep, 2018. 8(1): p. 9870. 112.Robert, V., et al., Hippocampal area CA2: properties and contribution to hippocampal function. Cell Tissue Res, 2018. 373(3): p. 525-540. 113.Hasselmo, M.E., The role of hippocampal regions CA3 and CA1 in matching entorhinal input with retrieval of associations between objects and context: theoretical comment on Lee et al. (2005). Behav Neurosci, 2005. 119(1): p. 342-5. 114.Vismer, M.S., et al., The piriform, perirhinal, and entorhinal cortex in seizure generation. Front Neural Circuits, 2015. 9: p. 27. 115.Ho, Y.H., et al., Peripheral inflammation increases seizure susceptibility via the induction of neuroinflammation and oxidative stress in the hippocampus. J Biomed Sci, 2015. 22: p. 46. 116.Fenton, A.A., et al., Attention-like modulation of hippocampus place cell discharge. J Neurosci, 2010. 30(13): p. 4613-25. 117.Jambaque, I., C. Pinabiaux, and M. Lassonde, Cognitive disorders in pediatric epilepsy. Handb Clin Neurol, 2013. 111: p. 691-5. 118.Acsady, L. and S. Kali, Models, structure, function: the transformation of cortical signals in the dentate gyrus. Prog Brain Res, 2007. 163: p. 577-99. 119.Remigio, G.J., et al., Corneal kindled C57BL/6 mice exhibit saturated dentate gyrus long-term potentiation and associated memory deficits in the absence of overt neuron loss. Neurobiology of disease, 2017. 105: p. 221-234. 120.Abbott, L.C. and F. Nigussie, Adult neurogenesis in the mammalian dentate gyrus. Anat Histol Embryol, 2019. 121.Alvarez-Buylla, A. and J.M. Garcia-Verdugo, Neurogenesis in adult subventricular zone. J Neurosci, 2002. 22(3): p. 629-34. 122.Iso, H., S. Simoda, and T. Matsuyama, Environmental change during postnatal development alters behaviour, cognitions and neurogenesis of mice. Behav Brain Res, 2007. 179(1): p. 90-8. 123.Gradari, S., et al., The relationship between behavior acquisition and persistence abilities: Involvement of adult hippocampal neurogenesis. Hippocampus, 2016. 26(7): p. 857-74. 124.Zimmerman, J.M., et al., The central nucleus of the amygdala is essential for acquiring and expressing conditional fear after overtraining. Learning & memory (Cold Spring Harbor, N.Y.), 2007. 14(9): p. 634-644. 125.Gotman, J. and V. Levtova, Amygdala-hippocampus relationships in temporal lobe seizures: a phase-coherence study. Epilepsy Res, 1996. 25(1): p. 51-7. 126.Goncalves Pereira, P.M., et al., MR volumetric analysis of the piriform cortex and cortical amygdala in drug-refractory temporal lobe epilepsy. AJNR Am J Neuroradiol, 2005. 26(2): p. 319-32. 127.Tebartz van Elst, L., et al., Increased amygdala volumes in female and depressed humans. A quantitative magnetic resonance imaging study. Neurosci Lett, 2000. 281(2-3): p. 103-6. 128.Daley, M., et al., Amygdala volume and psychopathology in childhood complex partial seizures. Epilepsy & behavior : E&B, 2008. 13(1): p. 212-217. 129.Rizk, M.L., et al., Importance of Drug Pharmacokinetics at the Site of Action. Clin Transl Sci, 2017. 10(3): p. 133-142. 130.de Vivo, L., et al., GLT-1 Promoter Activity in Astrocytes and Neurons of Mouse Hippocampus and Somatic Sensory Cortex. Front Neuroanat, 2010. 3: p. 31. 131.Eliwa, H., C. Belzung, and A. Surget, Adult hippocampal neurogenesis: Is it the alpha and omega of antidepressant action? Biochem Pharmacol, 2017. 141: p. 86-99. 132.Micheli, L., et al., Depression and adult neurogenesis: Positive effects of the antidepressant fluoxetine and of physical exercise. Brain Res Bull, 2018. 143: p. 181-193. 133.Nishii, A., et al., Adaptive Changes in the Sensitivity of the Dorsal Raphe and Hypothalamic Paraventricular Nuclei to Acute Exercise, and Hippocampal Neurogenesis May Contribute to the Antidepressant Effect of Regular Treadmill Running in Rats. Front Behav Neurosci, 2017. 11: p. 235. 134.Tiwari, S.K., et al., Ethosuximide Induces Hippocampal Neurogenesis and Reverses Cognitive Deficits in an Amyloid-beta Toxin-induced Alzheimer Rat Model via the Phosphatidylinositol 3-Kinase (PI3K)/Akt/Wnt/beta-Catenin Pathway. J Biol Chem, 2015. 290(47): p. 28540-58. 135.Ho, Y.J., et al., Use of Ceftriaxone in Treating Cognitive and Neuronal Deficits Associated With Dementia With Lewy Bodies. Front Neurosci, 2019. 13: p. 507. 136.Ho, Y.J., et al., Ceftriaxone Treatment for Neuronal Deficits: A Histological and MEMRI Study in a Rat Model of Dementia with Lewy Bodies. Behav Neurol, 2018. 2018: p. 4618716. 137.Ghanizadeh, A. and M. Berk, Beta-lactam antibiotics as a possible novel therapy for managing epilepsy and autism, a case report and review of literature. Iran J Child Neurol, 2015. 9(1): p. 99-102. 138.Nakajima, H., et al., Ceftriaxone-associated cholelithiasis in adult patients with bacterial meningitis. J Infect Dis Ther, 2014. 2: p. 161. 139.Abe, S., A case of ceftriaxone-associated biliary pseudolithiasis in an elderly patient with renal dysfunction. IDCases, 2017. 9: p. 62-64. 140.Giri, V.P., et al., Valproic Acid versus Lamotrigine as First-line Monotherapy in Newly Diagnosed Idiopathic Generalized Tonic -Clonic Seizures in Adults - A Randomized Controlled Trial. J Clin Diagn Res, 2016. 10(7): p. Fc01-4. 141.Kinze, S., et al., Valproic acid is effective in migraine prophylaxis at low serum levels: a prospective open-label study. Headache, 2001. 41(8): p. 774-8. 142.Gill, D., et al., Valproic acid and sodium valproate for neuropathic pain and fibromyalgia in adults. Cochrane Database Syst Rev, 2011(10): p. CD009183. 143.Cipriani, A., et al., Valproic acid, valproate and divalproex in the maintenance treatment of bipolar disorder. Cochrane Database Syst Rev, 2013(10): p. CD003196. 144.Silva, M.F., et al., Valproic acid metabolism and its effects on mitochondrial fatty acid oxidation: a review. J Inherit Metab Dis, 2008. 31(2): p. 205-16. 145.Reagan-Shaw, S., M. Nihal, and N. Ahmad, Dose translation from animal to human studies revisited. Faseb j, 2008. 22(3): p. 659-61. 146.Perucca, E., Pharmacological and therapeutic properties of valproate: a summary after 35 years of clinical experience. CNS Drugs, 2002. 16(10): p. 695-714. 147.Ristic, A.J., et al., The frequency of reversible parkinsonism and cognitive decline associated with valproate treatment: a study of 364 patients with different types of epilepsy. Epilepsia, 2006. 47(12): p. 2183-5. 148.Farkas, Z., et al., Quantitative analysis of motor performance in epilepsy patients treated with valproate. Seizure, 2010. 19(3): p. 173-177. 149.Tai, Y.T., et al., Low dose of valproate improves motor function after traumatic brain injury. Biomed Res Int, 2014. 2014: p. 980657. 150.Nasr Esfahani, P., et al., Short-Term Side Effects of Low Dose Valproate Monotherapy in Epileptic Children: A Prospective Study. Iran J Child Neurol, 2019. 13(2): p. 37-46. 151.Jafarian, M., et al., Cell injury and receptor expression in the epileptic human amygdala. Neurobiol Dis, 2019. 124: p. 416-427. 152.Cendes, F., et al., Relationship between atrophy of the amygdala and ictal fear in temporal lobe epilepsy. Brain, 1994. 117(4): p. 739-746. 153.Weihl, C.C., A.M. Connolly, and A. Pestronk, Valproate may improve strength and function in patients with type III/IV spinal muscle atrophy. Neurology, 2006. 67(3): p. 500-1. 154.Pandamooz, S., et al., Valproic acid preserves motoneurons following contusion in organotypic spinal cord slice culture. J Spinal Cord Med, 2017. 40(1): p. 100-106. 155.Bath, K.G. and T. Pimentel, Effect of early postnatal exposure to valproate on neurobehavioral development and regional BDNF expression in two strains of mice. Epilepsy Behav, 2017. 70(Pt A): p. 110-117. 156.Zeng, Q., et al., Valproic Acid Stimulates Hippocampal Neurogenesis via Activating the Wnt/β-Catenin Signaling Pathway in the APP/PS1/Nestin-GFP Triple Transgenic Mouse Model of Alzheimer's Disease. Frontiers in aging neuroscience, 2019. 11: p. 62-62. 157.Guna, V., et al., Anti-Oxidant and Anti-Apoptotic Effects of Berberine in Pentylenetetrazole-Induced Kindling Model in Rat. J Epilepsy Res, 2018. 8(2): p. 66-73.
|