|
[1] C. Schmiga, M. Rauer, M. Rüdiger, K. Meyer, J. Lossen, H. J. Krokoszinski, M. Hermle, S. W. Glunz, “Aluminum Doped P+ Silicon for Back Emitter and Backside Field: Results and Potential of Industrial N-Type and P-Type Solar Cells,” In Proceedings of the 25th European PV Solar Energy Conference and Exhibition, 2010, pp. 1163-1168. [2] S. Gatza, K. Bothe, J. Müller, T. Dullweber, R. Brendel, “Analysis of Local Al-Doped Back Surface Fields for High Efficiency Screen-Printed Solar Cells,” Energy Procedia, vol. 8, 2011, pp. 318-323. [3] A. Blakers, “Development of the PERC Solar Cell,” IEEE Journal of Photovoltaics, vol. 9, No. 3, 2019, pp. 629-635. [4] M. Kim, D. Kim, D. Kim, Y. Kang, “Analysis of Laser-Induced Damage During Laser Ablation Process Using Picosecond Pulse Width Laser to Fabricate Highly Efficient PERC Cells,” Solar Energy, vol. 108, 2014, pp. 101-106. [5] Y. Hwang, C. Park, J. Kim, J. Kim, J. Y. Lim, H. Choi, J. Jo, E. Lee, “Effect of Laser Damage Etching on I-PERC Solar Cells,” Renewable Energy, vol. 79, 2015, pp. 131-134. [6] M. Kim, S. Park, D. K, “Highly Efficient PERC Cells Fabricated Using the Low Cost Laser Ablation Process,” Solar Energy Materials & Solar Cells, vol. 117, 2013, pp. 126-131. [7] J. Schmidt, Y. A. Merkle, R. Brendel, B. Hoex, M. C. M. Sanden, W. M .M. Kessels, “Surface Passivation of High-Efficiency Silicon Solar Cells by Atomic-Layer-Deposited Al2O3,” Progress in Photovoltaics, vol. 16, 2008, pp. 461-466. [8] P. S. Cast, J. Benick, D. Kania, L. Weiss, M. Hofmann, J. Rentsch, R. Preu, S. W. Glunz, “High-Efficiency C-Si Solar Cells Passivated with ALD and PECVD Aluminum Oxide,” IEEE Electronic Device Letters, vol. 31,No. 7, 2010, pp. 695-697. [9] S. Mack, A. Wolf, C. Brosinsky, S. Schmeisser, A. Kimmerle, P. S. Cast, M. Hofmann, D. Biro, “Silicon Surface Passivation by Thin Thermal Oxide/PECVD Layer Stack Systems,” IEEE Journal of Photovoltaic, vol. 1, No. 2, 2011, pp. 135-145. [10] M. Hofmann, C. Schmidt, N. Kohn, J. Rentsch, S. W. Glunz, R. Preu, “Stack System of PECVD Amorphous Silicon and PECVD Silicon Oxide for Silicon Solar Cell Rear Side Passivation,” Progress in Photovoltaics, vol. 16, 2008, pp. 509-518. [11] C. Yu, S. Xu, J. Yao, S. Han, “Recent Advances in and New Perspectives on Crystalline Silicon Solar Cells with Carrier-Selective Passivation Contacts,” Crystals, vol. 8, No. 430, 2018, pp. 1-18. [12] L. G. Gerling, C. Voz, R. Alcubilla, J. Puigdollers, “Origin of Passivation in Hole-Selective Transition Metal Oxides for Crystalline Silicon Heterojunction Solar Cells,” Journal of Materials Research, vol. 32, 2017, pp. 260-268. [13] L. Fang, S. J. Baik, K. S. Lim, “Transition Metal Oxide Window Layer in Thin Film Amorphous Silicon Solar Cells,” Thin Solid Films, vol. 556, 2014, pp. 515-519. [14] M. T. Greiner, L. Chai, M. G. Helander, W. M. Tang, Z. H. Lu, “Transition Metal Oxide Work Functions: The Influence of Cation Oxidation State and Oxygen Vacancies,” Advanced Functional Materials, vol. 22, No. 7, 2012, pp. 4557-4568. [15] J. Griffin, D. C. Watters, H. Yi, A. Iraqi, D. Lidzey, A. R. Buckley, “The Influence of MoOx Anode Stoicheometry on the Performance of Bulk Heterojunction Polymer Solar Cells,” Advanced Energy Materials, vol. 3, 2013, pp. 1-6. [16] J. Sun, Q. Zheng, S. Cheng, H. Zhou, Y. Lai, J. Yu, “Comparing Molybdenum Oxide Thin Films Prepared by Magnetron Sputtering and Thermal Evaporation Applied in Organic Solar Cells,” Mater Electron, vol. 27, 2016, pp. 3245-3249. [17] R. Sagar, A. Rao, “Increasing the Silicon Solar Cell Efficiency with Transition Metal Oxide Nano-Thin Films as Anti-Reflection Coatings,” Materials Research Express, vol. 7, 2020, p. 016433. [18] Y. Yin, X. Pan, M. R. Andersson, D. A. Lewis, G. G. Andersson, “Mechanism of Organic Solar Cell Performance Degradation upon Thermal Annealing of MoOx,” ACS Appl. Energy Mater, vol. 3, 2020, pp. 366-376. [19] S. Chambon, L. Derue, M. Lahaye, B. Pavageau, L. Hirsch, G. Wantz, “MoO3 Thickness, Thermal Annealing and Solvent Annealing Effects on Inverted and Direct Polymer Photovoltaic Solar Cells,” Materials, vol. 5, 2012, pp. 2521-2536. [20] K. Mallem, S. Kim, S. Chowdary, S. Kim, J. Park, J. Kim, S. Dutta, M. Ju, Y. Kim, Y. H. Cho, E. C. Cho, J. Yi, “Influence of Molybdenum Oxide Thickness, Electronic Structure, and Work Function on the Performance of Hole Selective Silicon Heterojunction Solar Cells,” IEEE, 2019. [21] S. Cao, J. Li, Y. Lin, T. Pan, G. Du, J. Zhang, L. Yang, X. Chen, L. Lu, N. Min, M. Yin, D. Li, “Interfacial Behavior and Stability Analysis of P-Type Crystalline Silicon Solar Cells Based on Hole-Selective MoOx/Metal Contacts,” RRL Solar, vol. 3, 2019, p. 1900274. [22] L. Cattin, Y. Lare, M. Makha, M. Fleury, F. Chandezon, T. Abachi, M. Morsli, K. Napo, M. ddou, J. C. Bernède, “Effect of the Agdeposition Rate on the Properties of Conductive Transparent MoO3/Ag/MoO3 Multilayers,” Solar Energy Materials & Solar Cells, vol. 117, 2017, pp. 103-109. [23] D. Yang, X. Zhang, Y. Hou, K. Wang, T. Ye, J. Yoon, C. Wu, M. Sanghadasa, S. Liu, S. Priya, “28.3%-Efficiency Perovskite/Silicon Tandem Solar Cell by Optimal Transparent Electrode for High Efficient Semitransparent Top Cell,” Nano Energy, vol. 84, 2021, p. 105934. [24] E. Lamanna, F. Matteocci, E. Calabro, L. Serenelli, E. Salza, L. Martini, F. Menchini, M. Izzi, A. Agresti, S. Pescetelli, S. Bellani, A. E. D. R. Castillo, F. Bonaccorso, M. Tucci, A. D. Carlo, “Mechanically Stacked, Two-Terminal Graphene-Based Perovskite/Silicon Tandem Solar Cell with Efficiency over 26%,” Joule, vol. 4, 2020, pp. 865-881. [25] Z. Qiua, Z. Xua, N. Lia, N. Zhoua, Y. Chena, X. Wanb, J. Liub, N. Lib, X. Haoe, P. Bie, Q. Chend, B. Caoc, H. Zhoua, “Monolithic Perovskite/Si Tandem Solar Cells Exceeding 22% Efficiency Via Optimizing Top Cell Absorber,” Nano Energy, vol. 53, 2018, pp. 798-807. [26] Y. Wu, D. Yan, J. Peng, T. Duong, Y. Wan, S. P. Phang, H. Shen, N. Wu, C. Barugkin, X. Fu, S. Surve, D. Grant, D. Walter, T. P. White, K. R, Catchpole, K. J. Weber, “Monolithic Perovskite/Silicon-Homojunction Tandem Solar Cell with Over 22% Efficiency,” Energy & Environmental Science, vol. 10, 2017, pp. 2472-2479. [27] C. U. Kima, J. C. Yua, E. D. Junga, I. Y. Choia, W. Parka, H. Leea, I. Kimb, D. K. Leec, K. K. Hongd, M. H. Songa, K. J. Choia, “Optimization of Device Design for Low Cost and High Efficiency Planar Monolithic Perovskite/Silicon Tandem Solar Cells,” Nano Energy, vol. 60, 2019, pp. 213-221. [28] J. Kwon, M. J. Im, C. U. Kim, S. H. Won, S. B. Kang, S. H. Kang, I. T. Choi, H. K. Kim, I. H. Kim, J. H. Park, K. J. Choi, “Two-Terminal DSSC/Silicon Tandem Solar Cells Exceeding 18% Efficiency,” Energy & Environmental Science, vol. 9, 2016, pp. 3657-3665. [29] A. A. Ashouri, E. Köhnen, B. Li, A. Magomedov, H. Hempel, P. Caprioglio, J. A. Márquez, A. B. M. Vilches, E. Kasparavicius, J. A. Smith, N. Phung, D. Menzel, M. Grischek, L. Kegelmann, D. Skroblin, C. Gollwitzer, T. Malinauskas, M. Jošt, G. Matic, B. Rech, R. Schlatmann, M. Topic, L. Korte, A. Abate, B. Stannowski, D. Neher, M. Stolterfoht, T. Unold, V. Getautis, S. Albrecht, “Monolithic Perovskite/Silicon Tandem Solar Cell with >29% Efficiency by Enhanced Hole Extraction,” Science, vol. 370, 2020, pp. 1300-1309. [30] H. Kanda, N. Shibayama, A. Uzum, T. Umeyama, H. Imahori, Y. H. Chiang, P. Chen, M. K. Nazeeruddin, S. Ito, “Facile Fabrication Method of Small-Sized Crystal Silicon Solar Cells for Ubiquitous Applications and Tandem Device with Perovskite Solar Cells,” Materials Today Energy, vol. 7, 2018, pp. 190-198. [31] S. I. Kim, T. D. Jung, P. K. Song, “Enhanced Characterization of ITO Films Deposited on PET by RF Superimposed DC Magnetron Sputtering,” Thin Solid Films, vol. 518, 2010, pp. 3085-3088. [32] K. Utsumiu, O. Matsunaga, T. Takahata, “Low Resistivity ITO Film Prepared Using the Ultra High Density ITO Target,” Thin Solid Films, vol. 334, 1998, pp. 30-34. [33] J. Txintxurreta, E. G. Berasategui, R. Ortiz, O. Hernández, L. Mendizábal, J. Barriga, “Indium Tin Oxide Thin Film Deposition by Magnetron Sputtering at Room Temperature for the Manufacturing of Efficient Transparent Heaters,” Coatings, vol. 11, 2021, p. 11010092. [34] H. Ma, J. S. Cho, C. H. Park, “A Study of Indiumtin Oxide Thin Filmdeposited at Low Temperature Using Facing Target Sputtering System,” Surface and Coatings Technology, vol. 153, 2002, pp. 131-137. [35] T. J. Vink, W. Walrave, J. L. C. Daams, P. C. Baarslag, J. E. A. M. Meerakker, “On the Homogeneity of Sputter-Deposited ITO Films Part I. Stress and Microstructure,” Thin Solid Films, vol. 266, 1995, pp. 145-151. [36] H. Kanda, A. Uzum, H. Nishino, T. Umeyama, H. Imahori, Y. Ishikawa, Y. Uraoka, S. Ito, “Interface Optoelectronics Engineering for Mechanically Stacked Tandem Solar Cells Based on Perovskite and Silicon,” ACS Applied Materials & Interfaces, vol. 8, 2016, pp. 33553-33561. [37] J. Lee, H. Jung, J. Lee, D. Lim, K. Yang, J. Yi, W. C. Song, “Growth and Characterization of Indium Tin Oxide Thin Films Deposited on PET Substrates,” Thin Solid Films, vol. 516, 2008, pp. 1634-1639. [38] S. Zhu, X. Yao, Q. Ren, C. Zheng, S. Li, Y. Tong, B. Shi, S. Guo, L. Fan, H. Ren, C. Wei, B. Li, Y. Ding, Q. Huang, Y. Li, Y. Zhao, X. Zhang, “Transparent Electrode for Monolithic Perovskite/Silicon-Heterojunction Two Terminal Tandem Solar Cells,” Nano Energy, vol. 45, 2018, pp. 280-286. [39] A. M. Gheidari, F. Behafarid, G. Kavei, M. Kazemzad, “Effect of Sputtering Pressure and Annealing Temperature on the Properties of Indium Tin Oxide Thin Films,” Materials Science and Engineering B, vol. 136, 2007, pp. 37-40.
|