|
1.McCarthy, J., Minsky, M. L., Rochester, N., & Shannon, C. E. (2006). A proposal for the dartmouth summer research project on artificial intelligence, august 31, 1955. AI magazine, 27(4), 12-12. 2.Michalski, R. S., Carbonell, J. G., & Mitchell, T. M. (Eds.). (2013). Machine learning: An artificial intelligence approach. Springer Science & Business Media. 3.LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436-444. 4.偉育TibaMeBLOG Q13人工智慧(AI)、機器學習和深度學習有甚麼區別?Available: https://blog.tibame.com/?p=17580 5.JetsonHacks Developing for NVIDIA Jetson Available:https://jetsonhacks.com/nvidia-jetson-nano-j41-header-pinout/ 6.Cunningham, P., Cord, M., & Delany, S. J. (2008). Supervised learning. In Machine learning techniques for multimedia (pp. 21-49). Springer, Berlin, Heidelberg. 7.Ghahramani, Z. (2003, February). Unsupervised learning. In Summer school on machine learning (pp. 72-112). Springer, Berlin, Heidelberg. 8.Zhu, X. J. (2005). Semi-supervised learning literature survey. 9.Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press. 10.偉育TibaMeBLOG Q9什麼是機器學習? Available:https://blog.tibame.com/?p=18569 11.O'Shea, K., & Nash, R. (2015). An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458. 12.LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324. 13.Analytics Vidhya The Architecture of Lenet-5 Available: https://www.analyticsvidhya.com/blog/2021/03/the-architecture-of-lenet-5/ 14.Zaremba, W., Sutskever, I., & Vinyals, O. (2014). Recurrent neural network regularization. arXiv preprint arXiv:1409.2329. 15.Balachandran, S. (2009). General Purpose Input/Output (GPIO). Michigan State University College of Engineering. Published, 08-11. 16.Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780. 17.Ashing’s Blog 深度學習(3)--循環神經網絡(RNN,Recurrent Neural Networks) Available:https://arbu00.blogspot.com/2017/05/3-rnn-recurrent-neural-networks.html 18.Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 779-788). 19.Hosang, J., Benenson, R., & Schiele, B. (2017). Learning non-maximum suppression. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4507-4515). 20.Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 779-788). 21.Redmon, J., & Farhadi, A. (2017). YOLO9000: better, faster, stronger. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 7263-7271). 22.Ioffe, S., & Szegedy, C. (2015, June). Batch normalization: Accelerating deep network training by reducing internal covariate shift. In International conference on machine learning (pp. 448-456). PMLR. 23.Tian, Z., Shen, C., Chen, H., & He, T. (2019). Fcos: Fully convolutional one-stage object detection. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 9627-9636). 24.NVIDIA DEVELOPER Getting Stared with Jetson Nano Developer Kit Available:https://developer.nvidia.com/embedded/learn/get-started-jetson-nano-devkit#intro 25.Redmon, J., & Farhadi, A. (2018). Yolov3: An incremental improvement. arXiv preprint arXiv:1804.02767. 26.Lin, T. Y., Dollár, P., Girshick, R., He, K., Hariharan, B., & Belongie, S. (2017). Feature pyramid networks for object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2117-2125). 27.Kleinbaum, D. G., Dietz, K., Gail, M., Klein, M., & Klein, M. (2002). Logistic regression (p. 536). New York: Springer-Verlag. 28.Bochkovskiy, A., Wang, C. Y., & Liao, H. Y. M. (2020). Yolov4: Optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934. 29.Wang, C. Y., Liao, H. Y. M., Wu, Y. H., Chen, P. Y., Hsieh, J. W., & Yeh, I. H. (2020). CSPNet: A new backbone that can enhance learning capability of CNN. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops (pp. 390-391). 30.Xie, S., Girshick, R., Dollár, P., Tu, Z., & He, K. (2017). Aggregated residual transformations for deep neural networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1492-1500). 31.He, K., Zhang, X., Ren, S., & Sun, J. (2015). Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE transactions on pattern analysis and machine intelligence, 37(9), 1904-1916. 32.Liu, S., Qi, L., Qin, H., Shi, J., & Jia, J. (2018). Path aggregation network for instance segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 8759-8768). 33.Yun, S., Han, D., Oh, S. J., Chun, S., Choe, J., & Yoo, Y. (2019). Cutmix: Regularization strategy to train strong classifiers with localizable features. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 6023-6032). 34.Santhakumar, K., Kiran, B. R., Gauthier, T., & Yogamani, S. (2021). Exploring 2D data augmentation for 3D monocular object detection. arXiv preprint arXiv:2104.10786. 35.Ghiasi, G., Lin, T. Y., & Le, Q. V. (2018). Dropblock: A regularization method for convolutional networks. Advances in neural information processing systems, 31. 36.Müller, R., Kornblith, S., & Hinton, G. E. (2019). When does label smoothing help?. Advances in neural information processing systems, 32. 37.Misra, D. (2019). Mish: A self regularized non-monotonic activation function. arXiv preprint arXiv:1908.08681. 38.Tan, M., & Le, Q. (2019, May). Efficientnet: Rethinking model scaling for convolutional neural networks. In International conference on machine learning (pp. 6105-6114). PMLR. 39.Woo, S., Park, J., Lee, J. Y., & Kweon, I. S. (2018). Cbam: Convolutional block attention module. In Proceedings of the European conference on computer vision (ECCV) (pp. 3-19). 40.NVIDIA DEVELOPER Jetson Nano Developer Kit Available:https://developer.nvidia.com/embedded/jetson-nano-developer-kit 41.Ultralytics/yolov5—v6.1 – TensorRT,Tensorflow Edge TPU and OpenVINO Export and Inference。Available: https://github.com/ultralytics/yolov5/releases 42.楊安琪(2017)。審查文件只需幾秒!摩根大通AI軟體可替代律師年省36萬小時。Available:https://technews.tw/2017/03/03/jpmorgan-software-coin-reviews-documents-in-seconds/(Jun.20,2022).
|