|
[1].J. Yu, Y. Fu, L. Zhu, Z. Yang, X. Yang, L. Ding, Y. Zeng, B. Yan, J. Tang, P. Gao, and J. Ye, “Heterojunction solar cells with asymmetrically carrier-selective contact structure of molybdenum-oxide/silicon/magnesium-oxide”, Sol. Energy, vol. 159, No. 1, pp. 704-709, (2018). [2].L. G. Gerling, C. Voz, R. Alcubilla, and J. Puigdollers, “Origin of passivation in hole-selective transition metal oxides for crystalline silicon heterojunction solar cells”, J. Mater. Res., vol. 32, No. 2, pp. 260-268, (2017). [3].A. Tyagi, J. Biswas, K. Ghosh, A. Kottantharayil, and S. Lodha, “Performance analysis of silicon carrier selective contact solar cells with ALD MoOx as hole selective layer”, Silicon, vol. 14, No. 4, pp. 1663-1670, (2021). [4].M. Zhang, L. Qiu, W. Li, J. Zhang, L. Wu, and L. Feng, “Copper doping of MoOx thin films for CdTe solar cells”, Mater. Sci. Semicond. Process., vol. 86, No. 1, pp. 49-57, (2018). [5].L. Qiu, K. Chen, D. Yang, M. Zhang, X. Hao, W. Li, J. Zhang, and W. Wang, “Metal copper induced the phase transition of MoO3 to MoO2 thin films for the CdTe solar cells”, Mater. Sci. Semicond. Process., vol. 122, p. 105475, (2021). [6].C. Battaglia, S. M. D. Nicolas, S. D. Wolf, X. Yin, M. Zheng, C. Ballif, and A. Javey, “Silicon heterojunction solar cell with passivated hole selective MoOx contact”, Appl. Phys. Lett., vol. 104, No. 11, p. 113902, (2014). [7].M. Bivour, J. Temmler, H. Steinkemper, and M. Hermle, “Molybdenum and tungsten oxide : high work function wide band gap contact materials for hole selective contacts of silicon solar cells”, Sol. Energy Mater. Sol. Cells, vol. 142, pp. 34-41, (2015). [8].J. Bullock, Y. Wan, Z. Xu, S. Essig, M. Hettick, H.Wang, W. Ji, M. Boccard, A. Cuevas, C. Ballif, and A. Javey, “Stable dopant-free asymmetric heterocontact silicon solar cells with efficiencies above 20%”, ACS Energy Lett., vol. 3, No. 3, pp. 508–513, (2018). [9].W. Wu, J. Bao, Z. Liu, W. Lin, X. Yu, L. Cai, B. Liu, J. Song, and H. Shen, “Multilayer MoOx/Ag/MoOx emitters in dopant-free silicon solar cells”, Mater. Lett., vol. 189, No. 15, pp. 86-88, (2017). [10].J. Tong, Y. Wan, J. Cui, S. Lim, N. Song, and A. Lennon, “Solution-processed molybdenum oxide for hole-selective contacts on crystalline silicon solar cells”, Appl. Surf. Sci., vol. 423, No. 30, pp. 139-146, (2017). [11].S.W. Glunz, M. Bivour, C. Messmer, F. Feldmann, R. Müller, C. Reichel, A. Richter, F. Schindler, J. Benick, and M. Hermle, “Passivating and carrier-selective contacts – basic requirements and implementation”, 2017 IEEE 44th Photovoltaic Specialist Conference (PVSC), pp. 25-30, (2017). [12].M. D. Noce, E. Bobeico, L. Lancellotti, L. V. Mercaldo, I. Usatii, and P. D. Veneri, “MoOx as hole-selective collector in p-type Si heterojunction solar cells”, AIP Conf. Proc., vol. 1999, No. 1, p. 040006, (2018). [13].F. Feldmann, K.U. Ritzau, M. Bivour, A. Moldovan, S. Modi, J. Temmler, M. Hermle, and S. W. Glunz, “High and low work function materials for passivated contacts”, Energy Procedia, vol. 77, pp. 263–270, (2015). [14].Y. Wang, S. Lany, J. Ghanbaja, Y. Fagot-Revurat, Y. P. Chen, F. Soldera, D. Horwat, F. Mücklich, and J. F. Pierson, “Electronic structures of Cu2O, Cu4O3, and CuO : A joint experimental and theoretical study”, Phys. Rev. B: Condens. Matter, vol. 94, No. 24, p. 245418, (2016). [15].Y. Alajlani, F. Placido, A. Barlow, H. O. Chu, S. Song, S. U. Rahman, R. D. Bold, and D. Gibson, “Characterisation of Cu2O, Cu4O3, and CuO mixed phase thin films produced by microwave-activated reactive sputtering”, Vacuum, vol. 144, pp 217-228, (2017). [16].K. Akimoto, S. Ishizuka, M. Yanagita, Y. Nawa, G. K. Paul, T. Sakurai, and T. Sakurai, “Thin film deposition of Cu2O and application for solar cells”, Sol. Energy, vol. 80, No. 6, pp. 715-722, (2006). [17].C. C. Tseng, J. H. Hsieh, S. J. Liu, and W. Wu, “Effects of Ag contents and deposition temperatures on the electrical and optical behaviors of Ag-doped Cu2O thin films”, Thin Solid Films, vol. 518, No. 5, pp. 1407–1410, (2009). [18].P. W. Kuo, J. H. Hsieh, W. T. Wu, and C. H. Wu, “Optoelectronic properties of sputter-deposited Cu2O-Ag-Cu2O treated with rapid thermal annealing”, Vacuum, vol. 84, No. 5, pp. 633–637, (2010). [19].J. F. Piersona, A. Thobor-Kecka, and A. Billard, “Cuprite, paramelaconite and tenorite films deposited by reactive magnetron sputtering”, Appl. Surf. Sci., vol. 210, No. 3, pp. 359–367, (2003). [20].L. D. L. S. Valladares, D. H. Salinas, A. B. Dominguez, D. A. Najarro, S. I. Khondaker, T. Mitrelias, C. H. W. Barnes, J. A. Aguiar, and Y. Majima, “Crystallization and electrical resistivity of Cu2O and CuO obtained by thermal oxidation of Cu thin films on SiO2/Si substrates”, Thin Solid Films, vol. 520, No. 20, pp. 6368–6374, (2012). [21].R. Mukherjee, P. Srivastava, P. Ravindra, and S. Avasthi, “Doped Cu2O/n-Si heterojunction solar cell”, 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC), pp. 2162-2165, (2018). [22].Y. Liu, J. Zhu, L. Cai, Z. Yao, C. Duan, Z. Zhao, C. Zhao, and W. Mai, “Solution-processed high-quality Cu2O thin films as hole transport layers for pushing the conversion efficiency limit of Cu2O/Si heterojunction solar cells”, Sol. RRL, vol. 4, No. 1, p. 1900339, (2019). [23].M. Shasti, and A. Mortezaali, “Numerical study of Cu2O, SrCu2O2, and CuAlO2 as hole-transport materials for application in perovskite solar cells”, Phys. Status Solidi A, vol. 216, No. 18, p. 1900337, (2019). [24].N. G. Elfadill, M. R. Hashim , and K. A. T. Thabit, “The role of using seed-layer assisted electrodeposition method on the growth and the photovoltaic properties of p-Cu2O/n-Si heterojunctions”, J. Mater. Sci.: Mater. Electron., vol. 26, No. 2, pp. 985-991, (2015). [25].C. Zuo, and L. Ding, “Solution-processed Cu2O and CuO as hole transport materials for efficient perovskite solar cells”, Small, vol. 11, No. 41, pp. 5528-5532, (2015). [26].L. Luo, B. Zhou, Z. Liu, Q. Zhao, C. Wang, Z. Duan, Z. Xie, X. Yangb, and Y. Hu, “Study of Se/Te-doped Cu2O as a hole transport material in perovskite solar cells”, RSC Adv., vol. 13, No. 13, pp. 8476–8486, (2023). [27].P. Ravindra, R. Mukherjee, and S. Avasthi, “Hole-selective electron-blocking copper oxide contact for silicon solar cells”, IEEE J. Photovoltaics, vol. 7, No. 5, pp. 1278-1283, (2017). [28].N. Sliti, S. Touihri, and N. D. Nguyen, “Numerical modeling and analysis of AZO/Cu2O transparent solar cell with a TiO2 buffer layer”, Eng. Res. Express, vol. 5, No. 2, p. 025013, (2023). [29].P. Sawicka-Chudy, M. Sibiński, G. Wisz, E. Rybak-Wilusz, and M. Cholewa, “Numerical analysis and optimization of Cu2O/TiO2, CuO/TiO2, heterojunction solar cells using SCAPS”, J. Phys. Conf. Ser., vol. 1033, No. 1, p. 012002, (2018). [30].N. N. Mude, R. N. Bukke, and J. Jang, “High performance of solution-processed amorphous p‑channel Copper-Tin-Sulfur-Gallium Oxide thin-film transistors by UV/O3 photocuring”, ACS Appl. Mater. Interfaces, vol. 13, No. 17, pp. 20277−20287, (2021). [31].S. Li, Z. Yao, J. Zhou, R. Zhang, and H. Shen, “Fabrication and characterization of WO3 thin films on silicon surface by thermal evaporation”, Mater. Lett., vol. 195, No. 15, pp. 213–216, (2017). [32].R. Kotipallia, R. Delamare, O. Poncelet, X. Tang, L. A. Francis, D. Flandre, and S. Lee, “Passivation effects of atomic-layer-deposited aluminum oxide”, EPJ Photovoltaics, vol. 4, p. 45107, (2013). [33].M. Jeong, J. Park, Y. J. Cho, and H. S. Chang, “Improved passivation performance of Al2O3 interlayer/MoOx thin films continuously grown via atomic layer deposition”, Thin Solid Films, vol. 766, No. 1, p. 139667, (2023). [34].J. Melskens, B. W. H. V. D. Loo, B. Macco, L. E. Black, S. Smit, and W. M. M. Kessels, “Passivating contacts for crystalline silicon solar cells: from concepts and materials to prospects”, IEEE J. Photovoltaics, vol. 8, No. 2, pp. 373 - 388, (2018).
|