|
[1]Pethurajan V, Sivan S, Joy GC. Issues, comparisons, turbine selections and applications – An overview in organic Rankine cycle. Energy Conv Manag. 2018;166:474-88. [2]Song J, Song Y, Gu CW. Thermodynamic analysis and performance optimization of an Organic Rankine Cycle (ORC) waste heat recovery system for marine diesel engines. Energy. 2015;82:976-85. [3]Pang KW, Chen SW, Hung TW, Feng YQ, Yang SC, Wong KW, et al. Experimental study on organic Rankine cycle utilizing R245fa, R123 and their mixtures to investigate the maximum power generation from low-grade heat. Energy. 2017;133:636-51. [4]Larsen U, Nguyen TV, Knudsen T, Haglind F. System analysis and optimisation of a Kalina split-cycle for waste heat recovery on large marine diesel engines. Energy. 2014;64:484-94. [5]Liu P, Shu G, Tian H. How to approach optimal practical Organic Rankine cycle (OP-ORC) by configuration modification for diesel engine waste heat recovery. Energy. 2019;174:543-52. [6]Lion S, Taccani R, Vlaskos I, Scrocco P, Vouvakos X, Kaiktsis L. Thermodynamic analysis of waste heat recovery using Organic Rankine Cycle (ORC) for a two-stroke low speed marine Diesel engine in IMO Tier II and Tier III operation. Energy. 2019;183:48-60. [7]Song C, Gu M, Miao Z, Liu C, Xu J. Effect of fluid dryness and critical temperature on trans-critical organic Rankine cycle. Energy. 2019;174:97-109. [8]Wang EH, Zhang HG, Fan BY, Ouyang MG, Zhao Y, Mu QH. Study of working fluid selection of organic Rankine cycle (ORC) for engine waste heat recovery. Energy. 2011;36:3406-18. [9]Kajurek J, Rusowicz A, Grzebielec A, Bujalski W, Futyma K, Rudowicz Z. Selection of refrigerants for a modified organic Rankine cycle. Energy. 2019;168:1-8. [10]Yang M, Yeh R. The effects of composition ratios and pressure drops of R245fa/R236fa mixtures on the performance of an organic Rankine cycle system for waste heat recovery. Energy Conversion and Management 2018;175:313-26. [11]Pang KC, Chen SC, Hung TC, Feng YQ, Yang SC, Wong KW, et al. Experimental study on organic Rankine cycle utilizing R245fa, R123 and their mixtures to investigate the maximum power generation from low-grade heat. Energy. 2017;133:636-51. [12]Yang MH, Yeh RH, Hung TC. Thermo-economic analysis of the transcritical organic Rankine cycle using R1234yf/R32 mixtures as the working fluids for lower-grade waste heat recovery. Energy. 2017;140:818-36. [13]Chys M, van den Broek M, Vanslambrouck B, De Paepe M. Potential of zeotropic mixtures as working fluids in organic Rankine cycles. Energy. 2012;44:623-32. [14]Hoang AT. Waste heat recovery from diesel engines based on Organic Rankine Cycle. Applied Energy 2018;231:138-66. [15]Yang MH. Optimizations of the waste heat recovery system for a large marine diesel engine based on transcritical Rankine cycle. Energy. 2016;113:1109-24. [16]Shu G, Liu L, Tian H, Wei H, Yu G. Parametric and working fluid analysis of a dual-loop organic Rankine cycle (DORC) used in engine waste heat recovery. Applied Energy. 2014;113:1188-98. [17]Zhang HG, Wang EH, Fan BY. A performance analysis of a novel system of a dual loop bottoming organic Rankine cycle (ORC) with a light-duty diesel engine. Applied Energy. 2013;102:1504-13. [18]Yang MH. Thermal and economic analyses of a compact waste heat recovering system for the marine diesel engine using transcritical Rankine cycle. Energy Conversion and Management. 2015;106:1082-96. [19]Yu G, Shu G, Tian H, Wei H, Liu L. Simulation and thermodynamic analysis of a bottoming Organic Rankine Cycle (ORC) of diesel engine (DE). Energy. 2013;51:281-90. [20]Vaja I, Gambarotta A. Internal Combustion Engine (ICE) bottoming with Organic Rankine Cycles (ORCs). Energy. 2010;35:1084-93. [21]Quoilin S, Broek MVD, Declaye S, Dewallef P, Lemort V. Techno-economic survey of Organic Rankine Cycle (ORC) systems. Renewable and Sustainable Energy Reviews. 2013;22:168-86. [22]Pethurajan V, Sivan S, Joy GC. Issues, comparisons, turbine selections and applications – An overview in organic Rankine cycle. Energy Conv Manag. 2018;166:474-88. [23]Zhang X, He M, Zhang Y. A review of research on the Kalina cycle. Renewable and Sustainable Energy Reviews. 2012;16:5309-18. [24]Bombarda P, Invernizzi CM, Pietra C. Heat recovery from Diesel engines: A thermodynamic comparison between Kalina and ORC cycles. Applied Thermal Engineering. 2010;30:212-9. [25]Wang M, Manera A, Qiu S, Su GH. Ammonia-water mixture property code (AWProC) development, verification and Kalina cycle design for nuclear power plant. Progress in Nuclear Energy. 2016;91:26-37. [26]Pethurajan V, Sivan S, Joy GC. Issues, comparisons, turbine selections and applications – An overview in organic Rankine cycle. Energy Conv Manag. 2018;166:474-88. [27]Zhi Li, Yiji Lu, Yuqi Huang, Gao Qian, Fenfang Chen, Xiaoli Yu, Anthony Roskilly. Comparison study of Trilateral Rankine Cycle, Organic Flash Cycle and basic Organic Rankine Cycle for low grade heat recovery. Energy 2017;142:1441-47 [28]Ho T, Mao SS, Greif R. Comparison of the Organic Flash Cycle (OFC) to other advanced vapor cycles for intermediate and high temperature waste heat reclamation and solar thermal energy. Energy. 2012;42:213-23 [29]Pethurajan V, Sivan S, Joy GC. Issues, comparisons, turbine selections and applications – An overview in organic Rankine cycle. Energy Conv Manag. 2018;166:474-88. [30]Baccioli A, Antonelli M. Organic Flash Cycles: Off-design behavior and control strategies of two different cycle architectures for Waste Heat Recovery applications. Energy Conv Manag. 2018;157:176-85. [31]Yang M-H. The performance analysis of the transcritical Rankine cycle using carbon dioxide mixtures as the working fluids for waste heat recovery. Energy Conv Manag. 2017;151:86-97. [32]Yunus A. Cengel, Robert H. Turneer. Fundamentals of THERMAL-FLUID SCIENCES, McGraw-Hill, Chicago, 2005 [33]彭國倫,FORTRAN 95程式設計,初版,碁峯資訊股份有限公司發行,2015.03 [34]Eric W. Lemmon, Marcia L. Huber, Mark O. McLinden, NIST Reference Fluid Thermodynamic and Transport Properties— REFPROP. 2013.04 [35]Tchanche BF, Lambrinos G, Frangoudakis A, Papadakis G. Low-grade heat conversion into power using organic Rankine cycles – A review of various applications. Renewable and Sustainable Energy Reviews. 2011;15:3963-79. [36]Hung TC, Wang SK, Kuo CH, Pei BS, Tsai KF. A study of organic working fluids on system efficiency of an ORC using low-grade energy sources. Energy. 2010;35:1403-11. [37]Xie H, Yang C. Dynamic behavior of Rankine cycle system for waste heat recovery of heavy duty diesel engines under driving cycle. Applied Energy. 2013;112:130-41. [38]Chen H, Goswami DY, Stefanakos EK. A review of thermodynamic cycles and working fluids for the conversion of low-grade heat. Renewable and Sustainable Energy Reviews. 2010;14:3059-67. [39]工作流體化學組成,https://zh.wikipedia.org/wiki/制冷剂 [40]Yang J, Ye Z, Yu B, Ouyang H, Chen J. Simultaneous experimental comparison of low-GWP refrigerants as drop-in replacements to R245fa for Organic Rankine cycle application: R1234ze(Z), R1233zd(E), and R1336mzz(E). Energy. 2019;173:721-31. [41]Yang J, Sun Z, Yu B, Chen J. Experimental comparison and optimization guidance of R1233zd(E) as a drop-in replacement to R245fa for organic Rankine cycle application. Applied Thermal Engineering. 2018;141:10-9. [42]Giuffrida A. A theoretical study on the performance of a scroll expander in an organic Rankine cycle with hydrofluoroolefins (HFOs) in place of R245fa. Energy. 2018;161:1172-80. [43]Petr P, Raabe G. Evaluation of R-1234ze(Z) as drop-in replacement for R-245fa in Organic Rankine Cycles – From thermophysical properties to cycle performance. Energy. 2015;93:266-74. [44]Mota-Babiloni A, Navarro-Esbrí J, Molés F, Cervera ÁB, Peris B, Verdú G. A review of refrigerant R1234ze(E) recent investigations. Applied Thermal Engineering. 2016;95:211-22. [45]Janković Z, Sieres Atienza J, Martínez Suárez JA. Thermodynamic and heat transfer analyses for R1234yf and R1234ze(E) as drop-in replacements for R134a in a small power refrigerating system. Applied Thermal Engineering. 2015;80:42-54. [46]林德集團,http://www.linde-gas.com/en/ [47]W型冷凍劑網站,https://w-refrigerant.com/en/ [48]Wärtsilä Corporation, Trade press release, https://www.wartsila.com/media/news/03-03-2003-first-wartsila-32-engines-with-common-rail-injection [49]Wärtsilä Corporation, Trade press release, https://www.wartsila.com/media/news/20-09-2004-wartsila-ship-power-plant-for-offshore-construction-vessel [50]Wärtsilä Corporation, Trade press release, https://www.wartsila.com/media/news/02-11-2005-wartsila-diesel-electric-power-for-heavy-lift-conversions [51]Wärtsilä Corporation, Trade press release, https://www.wartsila.com/media/news/13-04-2005-wartsila-power-for-twin-screw-product-tankers [52]Wärtsilä Image Bank, https://dam.wartsila.com/dam/plugins/dam/index.html [53]BMK MARINE, https://www.rmkmarine.com.tr/066-chiberta.html [54]Li Y-R, Wang J-N, Du M-T. Influence of coupled pinch point temperature difference and evaporation temperature on performance of organic Rankine cycle. Energy. 2012;42:503-9. [55]BALTICSHIPPING.COM, https://www.balticshipping.com/vessel/imo/8766296 [56]Wärtsilä 32 product guide, https://www.wartsila.com/docs/default-source/product-files/engines/ms-engine/product-guide-o-e-w32.pdf?utm_source=engines&utm_medium=dieselengines&utm_term=w32&utm_content=productguide&utm_campaign=msleadscoring [57]ISUZU 4JG1-TPV的船用發電機,https://engines.isuzu.com.au/Isuzu_Files/Spec_Sheets/CurrentSpecSheetsEngines/4JG1TPV_SpecSheet.pdf [58]艾美捷工程有限公司,https://www.amz-fog.com.tw/product-detail-332198.html [59]三菱電機,https://www.seec.com.tw/Content/Goods/GCont.aspx?SiteID=10&MmmID=655575436061073254&CatId=2015120919140280690&MSID=655632441727721037#ad-image-0 [60]鑫威欣業有限公司,https://www.shinuei.com.tw/product-detail-1752672.html [61]本田汽車壓縮機,https://www.swisclima.ch/en/fans/g/1010/m/10250 [62]高力熱處理工業股份有限公司,https://kaori.com.tw/video-c.html [63]速克立股份有限公司,https://www.boatshow.tw/getfile?source=C619278905636CEA90F4B167A006E1851E8C8EB5B141D717F34EA33843B733E247C87CBC06F29658A24D789C0CAC1E9401E1CE29F46BA72CA35D5A5E5593BCDC2F860A1670266E4E2AEDCE2B43B6628665CA0B50A0AE1887&filename=132A8D3558B3C762D0636733C6861689 [64]冷媒錶組,ROTHENBERGER, https://rothenberger.com/ae-en/
|