資料載入處理中...
跳到主要內容
臺灣博碩士論文加值系統
English
|
Mobile
免費會員
登入
|
註冊
切換版面粉紅色
切換版面綠色
切換版面橘色
切換版面淡藍色
切換版面黃色
切換版面藍色
功能切換導覽列
訪客IP:216.73.216.195
字體大小:
字級大小SCRIPT,如您的瀏覽器不支援,IE6請利用鍵盤按住ALT鍵 + V → X → (G)最大(L)較大(M)中(S)較小(A)小,來選擇適合您的文字大小,如為IE7或Firefoxy瀏覽器則可利用鍵盤 Ctrl + (+)放大 (-)縮小來改變字型大小。
字體大小變更功能,需開啟瀏覽器的JAVASCRIPT功能
:::
詳目顯示
recordfocus
第 1 筆 / 共 1 筆
/1
頁
論文基本資料
摘要
外文摘要
目次
參考文獻
電子全文
QR Code
本論文永久網址
:
複製永久網址
Twitter
研究生:
倪瑞鴻
研究生(外文):
NI, RUI-HONG
論文名稱:
負壓旋風式分離機應用於PET-PVC分離效果之評估
論文名稱(外文):
Evaluation of the Effectiveness of Negative Pressure Cyclone Separator in PET-PVC Separation
指導教授:
吳瑋特
指導教授(外文):
WU, WEI-TE
口試委員:
吳瑋特
、
王劍能
、
施威宏
口試委員(外文):
WU, WEI-TE
、
WANG, JIAN-NENG
、
SHIH, WEI-HUNG
口試日期:
2024-07-18
學位類別:
碩士
校院名稱:
國立虎尾科技大學
系所名稱:
機械與電腦輔助工程系碩士班
學門:
工程學門
學類:
機械工程學類
論文種類:
學術論文
論文出版年:
2024
畢業學年度:
112
語文別:
中文
論文頁數:
52
中文關鍵詞:
負壓
、
風選
、
PET-PVC分離
、
GPT
外文關鍵詞:
Negative pressure
、
Wind selection
、
PET-PVC separation
、
GPT
相關次數:
被引用:0
點閱:49
評分:
下載:0
書目收藏:0
回收再生循環這個議題是全球都需要重視的,而寶特瓶回收再製已於世界各國行之有年,現今寶特瓶回收製程分為物理回收與化學回收,由於台灣塑膠廢棄物種類多樣的緣故,因此常用物理回收法,物理回收法是將回收後清洗完的塑膠容器破碎,以單(雙)螺桿擠出的方式進行回收塑料顆粒的再製流程,而破碎後的保特瓶碎片是由瓶身(PET)及外標籤(PVC)所混合的,如需再製成PET顆粒的話要將內部的PVC分離,由於現今回收廠所使用之分離設備皆大同小異,而設備廠商昶穩機械工業有限公司設計了一種新式的分離機為負壓旋風式分離機,其原理為上方之鼓風機會對設備內部進行抽氣形成一個負壓空間,外部空氣會利用設備中的進風口進入,使空氣流動,並且藉由此空氣的流動使重量較輕之物質進行分離,為了探討此機台的分離效率將與本研究進行合作。
而本研究將利用負壓旋風式分離機對PET-PVC進行分離,首先將個別倒入500 g之PET碎片與PVC碎片來決定鼓風機馬達頻率,期望經由1分鐘的分離過程後可以保留較多之PET碎片與較少之PVC碎片,由實驗可得知鼓風機馬達頻率於30、35及40 Hz時使用頻率為40 Hz時所保留的PET碎片為450 g而PVC碎片保留了50 g,因此馬達頻率為40 Hz較合適PET與PVC單獨分離之情況。後續為了驗證鼓風機馬達頻率40 Hz對於PET-PVC碎片混合物之可行性,本研究將到如PFT碎片與PVC碎片重量比例為3:1所混合之1 kg的混料進行1分鐘的分離,期望分離過後可以保留較多的混料,由實驗可得知鼓風機馬達頻率於40、43及45 Hz時使用頻率40 Hz時可以保留650 g的混料,而其餘的街只剩下不到500 g已經不符合需求,因此後續研究將以鼓風機馬達頻率固定為40 Hz的條件下進行。
PET-PVC分離試驗將固定鼓風機馬達頻率為40 Hz、分散盤馬達頻率為30 Hz、倒入1 kg的混料與分離時間1 min,並改變分散盤高度(0、4 cm)與分散盤樣式(分散盤A:碟型、分散盤B:花板),每組實驗將以自由度為10的前提下進行,並且藉由統計分析中的假設檢定來判別更改設計前後的差別於統計的立場是否可以得到支持,根據實驗可以得出在PVC蒐集率方面,當使用分散盤B時,分散盤高度由0 cm提高至4 cm時,PVC平均蒐集率由30.34%下降至7.73%,於統計學的立場是可以得到支持的,且錯誤率小於1%;而PET蒐集率方面,當分散盤高度固定為0 cm時,將分散盤A更換至分散盤B,PET平均蒐集率由89.00%提升至94.73%,於統計學的立場是可以得到支持的,且錯誤率小於1%。後續於相同的條件下到1 kg中PVC碎片佔2%的混料,此比例與回收廠實際拿到的相同,來驗證分散盤B,由實驗可以得知使用分散盤B,高度由0cm提升至4 cm後其PVC平均含量由0.386%下降至0.167%於統計學的立場是可以被支持的,並且錯誤的機率不超過1%。
由PET-PVC分離實驗並結合統計分析可以得知負壓旋風式分離機於鼓風機馬達頻率為40 Hz、分散盤馬達頻率為30 Hz的條件下選用分散盤B並且高度於4 cm位置處時可以得到較佳的分離效率。
最後本研究將利用實驗中所得數據設計Custom GPT,透過現有數據不斷的訓練後,來推論實驗中其餘沒進行的實驗參數分離率,以便後續設計時可以節省大量時間。
Recycling and regeneration is an issue that needs global attention, and PET bottle recycling has been practiced in many countries for years. Currently, the recycling process for PET bottles is divided into physical recycling and chemical recycling. Due to the variety of plastic waste in Taiwan, physical recycling is commonly used. In physical recycling, the plastic containers are washed, crushed, and then reprocessed into plastic pellets using a single or twin-screw extrusion process. The crushed PET bottle fragments consist of both the bottle body (PET) and the outer label (PVC). To reprocess them into PET pellets, the PVC must be separated. Since most recycling plants currently use similar separation equipment, Chang Wen Machinery Co., Ltd. has designed a new type of separation machine called the Negative Pressure Cyclone Separator. The principle behind this machine is that a blower at the top of the device creates a negative pressure environment by drawing air out, causing external air to enter through the air inlet, which induces airflow. This airflow then separates lighter materials. To explore the separation efficiency of this machine, a collaboration with this research project has been established.
This study will use the Negative Pressure Cyclone Separator to separate PET and PVC fragments. Initially, 500 grams of PET fragments and 500 grams of PVC fragments will be individually fed into the machine to determine the optimal blower motor frequency. The goal is to retain as many PET fragments and as few PVC fragments as possible after a 1-minute separation process. The experiment showed that at blower motor frequencies of 30 Hz, 35 Hz, and 40 Hz, the frequency of 40 Hz resulted in the retention of 450 grams of PET fragments and 50 grams of PVC fragments. Therefore, a motor frequency of 40 Hz is more suitable for the individual separation of PET and PVC.
Subsequently, to verify the feasibility of using a blower motor frequency of 40 Hz for separating a PET-PVC fragment mixture, the study will proceed with a mixture of 1 kg with a weight ratio of 3:1 of PET to PVC fragments. After a 1-minute separation process, the aim is to retain as much of the mixture as possible. The experiment demonstrated that at blower motor frequencies of 40 Hz, 43 Hz, and 45 Hz, the frequency of 40 Hz could retain 650 grams of the mixture, while the remaining mixture was less than 500 grams, which did not meet the requirements. Therefore, subsequent research will be conducted with the blower motor frequency fixed at 40 Hz.
In the PET-PVC separation experiment, the blower motor frequency is fixed at 40 Hz, the dispersing disc motor frequency at 30 Hz, with 1 kg of mixed material being fed into the machine for a separation time of 1 minute. The experiment involves varying the dispersing disc height (0 cm and 4 cm) and the dispersing disc type (Dispersing Disc A: dish-type, Dispersing Disc B: perforated plate). Each experiment will be conducted with a degree of freedom of 10, and hypothesis testing from statistical analysis will be used to determine whether the changes in design are statistically supported.
According to the experiment, in terms of PVC collection rate, when using Dispersing Disc B and increasing the disc height from 0 cm to 4 cm, the average PVC collection rate decreases from 30.34% to 7.73%, which is statistically supported with an error rate of less than 1%. For the PET collection rate, when the disc height is fixed at 0 cm, replacing Dispersing Disc A with Dispersing Disc B increases the average PET collection rate from 89.00% to 94.73%, which is also statistically supported with an error rate of less than 1%.
Further testing under the same conditions with a mixture where PVC fragments account for 2% of the 1 kg sample (matching the actual ratio found in recycling plants) was conducted to verify the performance of Dispersing Disc B. The experiment showed that using Dispersing Disc B, with an increase in height from 0 cm to 4 cm, the average PVC content decreased from 0.386% to 0.167%. This result is statistically supported, with an error probability of less than 1%.
From the PET-PVC separation experiment combined with statistical analysis, it can be concluded that the Negative Pressure Cyclone Separator achieves better separation efficiency when the blower motor frequency is set at 40 Hz, the dispersing disc motor frequency at 30 Hz, and Dispersing Disc B is used at a height of 4 cm.
Finally, this study will use the data obtained from the experiments to design a Custom GPT model. By continuously training the model with the existing data, it will be able to infer the separation rates for experimental parameters that were not tested. This will help save a significant amount of time in future design processes.
摘要...i
Abstract...iii
誌謝...v
目錄...vi
表目錄...viii
圖目錄...ix
第一章 緒論...1
1.1 前言...1
1.2 文獻回顧...4
1.2.1塑膠種類...4
1.2.2寶特瓶回收法...5
1.2.3負壓及正壓...7
1.3 研究動機與目的...8
第二章 研究設備、材料與方法...9
2.1研究設備與材料...10
2.1.1負壓旋風式分離設備...10
2.1.2烘乾機...13
2.1.3 PET與PVC碎片製備...14
2.1.4分析儀器及量測設備...15
2.2研究方法...18
2.2.1 PET與PVC蒐集率操作流程...18
2.2.2鼓風機出口風速量測流程...19
2.2.3 PET-PVC分離率實驗操作流程...21
2.2.4 PET-PVC分離率計算與流程...22
2.2.5假設檢定流程...23
2.2.6 Custom GPT建立流程...24
第三章 結果與討論...25
3.1 PET與PVC蒐集率實驗初步設定...25
3.2 不同分散盤高度對鼓風機出口風速影響...27
3.3 PET-PVC分離率實驗結果...28
3.4固定分散盤樣式更改分散盤高度對PVC及PET的蒐集率影響...31
3.4.1固定分散盤A更改高度後對PVC蒐集率影響...31
3.4.2固定分散盤A更改高度後對PET蒐集率影響...32
3.4.3固定分散盤B更改高度後對PVC蒐集率影響...33
3.4.4固定分散盤B更改高度後對PET蒐集率影響...34
3.5固定分散盤高度更改分散盤樣式對PVC及PET的蒐集率影響...35
3.5.1固定高度0 cm更改分散盤樣式對PVC蒐集率影響...35
3.5.2固定高度0 cm更改分散盤樣式對PET蒐集率影響...36
3.5.3固定高度4 cm更改分散盤樣式對PVC蒐集率影響...37
3.5.4固定高度4 cm更改分散盤樣式對PET蒐集率影響...38
3.6 PET-PVC分離率驗證...41
3.7 Custom GPT建立...43
第四章 結論...45
第五章 研究限制與未來研究建議...46
參考文獻...47
Extended Abstract...49
[1]SMF,2023,“History of Plastic Water Bottles: How Did They Become So Ubiquitous?”from
https://smfgmbh.com/history-of-plastic-water/
[2]環境部統計處,2023,“公告應回收廢物品及容器回收量”。取自
https://data.moenv.gov.tw/dataset/detail/STAT_P_133
[3]願景工程,2023,“從回收和消費做起 讓減塑走入生活”。取自
https://visionproject.org.tw/story/6822
[4]張惠娟,et al.,2013,“寶特瓶回收再製技術之探討”食品藥物研究年報 4: 442-449。
[5]KEENPRO,2019,“PET瓶回收過程及用途”。取自https://www.keen-pro.com/webls-zh-tw/msg/msg78.html
[6]Liu, Y., et al.,2018, “The resource utilization of ABS plastic waste with subcritical and supercritical water treatment.” Journal.
[7]Balakrishnan, R.K., et al.,2007, “Thermal degradation of polystyrene in the presence of hydrogen by catalyst in solution.” Journal, 2007. 92: p. 1583-1591.
[8]衛生福利部食品藥物管理署,2017,“不可不問的塑膠類 200問”。取自https://www.fda.gov.tw/tc/publicationsContent.aspx?id=116
[9]行政院衛生署食品藥物管理局,2015,“常見塑膠材質、特性、產品及耐熱程度”。取自https://www.fda.gov.tw/upload/133/2015011414464365235.pdf
[10]Abhijit Majumdar, et al.,2020, “Circular fashion: Properties of fabrics made from mechanically recycled poly-ethylene terephthalate (PET) bottles” Resources, Conservation & Recycling 161.
[11]Zoé OG Schyns, et al.,2021, “Mechanical Recycling of Packaging Plastics: A Review”, Macromolecular Rapid Communications, Volume 42, Issue 3.
[12]Vincent Rohart, et al.,2022, “Stretchability above glass transition of mechanically recycled poly(ethylene terephtalate), PET”, Polymer, Volume 257.
[13]Tianxiang Ren, et al.,2024, “Recycling and high-value utilization of polyethylene terephthalate wastes: A review”, Environmental Research, Volume 249.
[14]Toshiaki Yoshioka, et al.,2005, “Effects of metal oxides on the pyrolysis of poly(ethylene terephthalate)”, Journal of Analytical and Applied Pyrolysis, Volume 73.
[15]Jose Jonathan Rubio Arias, et al.,2021, “Instantaneous hydrolysis of PET bottles: an efficient pathway for the chemical recycling of condensation polymers”, Green Chemistry, Issue 24.
[16]Ozan Kökkılıç, et al.,2022, “Separation of plastic wastes using froth flotation – An overview”, Advances in Colloid and Interface Science, Volume 308.
[17]Mahsa Babaei, et al.,2024, “Chemical recycling of Polyethylene terephthalate: A mini-review”, Journal of Environmental Chemical Engineering, Volume 12.
[18]Haiming Huang, et al.,2016, “Recycling struvite pyrolysate obtained at negative pressure for ammonia nitrogen removal from landfill leachate”, Chemical Engineering Journal, Volume 284.
[19]Ali Kassab, et al.,2023, “Advancing Plastic Recycling: Challenges and Opportunities in the Integration of 3D Printing and Distributed Recycling for a Circular Economy”, Polymers.
[20]Sunil Sable, et al.,2024, “Exploring the Complexities and Challenges of Plastic Recycling: A Comprehensive Research Review”, ICSSMT 2023, pp.189-202.
[21]Yuya Ono, et al.,2020, “Environmental Assessment of Innovative Paper Recycling Technology Using Product Lifecycle Perspectives”, Resources.
[22]Ichiro Tsuchimoto, et al.,2022, “Recycling of Plastic Waste: A Systematic Review Using Bibliometric Analysis”, Sustainability.
[23]Gerhart, A. L., et al.,2018, “Munson, Young and Okiishi's fundamentals of fluid mechanics.”, John Wiley & Sons.
[24]Allan G.Bluman,2012,“Elementary Statistics: A step by step approach-8th”from
https://ugess3.wordpress.com/wp-content/uploads/2016/01/bluman-step-by-step-statistics-8th-edition.pdf
電子全文
(
網際網路公開日期:20290801
)
推文
當script無法執行時可按︰
推文
網路書籤
當script無法執行時可按︰
網路書籤
推薦
當script無法執行時可按︰
推薦
評分
當script無法執行時可按︰
評分
引用網址
當script無法執行時可按︰
引用網址
轉寄
當script無法執行時可按︰
轉寄
top
相關論文
相關期刊
熱門點閱論文
無相關論文
無相關期刊
1.
相似性模型及SST k-ω模型應用於PET-PVC運輸量之研究
2.
不鏽鋼水刀噴嘴電解拋光之研究及其應用於廢輪胎水裂解效果之評估
3.
雷射紋理氧化處理鈦鋯鉭薄膜之機械性質與生物學性質
4.
光纖雷射切割機機電整合與匹配
5.
多層氮化鋁鈦硼與氮化鋁鉻硼薄膜之機械性質與鈦合金切削分析
6.
旋風分離器之田口穩健設計數值模擬
7.
建築結構系統抗震能力以結構模型探討之試驗研究
8.
水刀式廢輪胎橡膠粉添加於瀝青膠泥 之長期老化的工程性質探討
9.
非工作時間以即時通訊討論工作訊息對伴侶衝突的影響-以伴侶承諾為調節效果驗證
10.
紅麴發酵粉末對於調節血脂功能之功效性研究
11.
擴增實境技術輔助後牙矯正器黏貼提升精準度
12.
承受滲流之冰凍工法模型箱內凍土成長 二維有限元素分析
13.
衛星姿態控制輪之結構改良設計及其強度與振動分析
14.
建置新產品研發在銷售與服務之策略優勢-以A公司為例
15.
企業創新、智慧資本、ESG評分會影響投資效率? 以東協國家為例
簡易查詢
|
進階查詢
|