衛生福利部食品藥物管理署。2013。食用菇類重金屬限量標準法。法規。衛生福利部食品藥物管理署。台灣。
衛生福利部食品藥物管理署。2013。牛羊豬及家禽可食性內臟重金屬限量標準法。法規。衛生福利部食品藥物管理署。台灣。
衛生福利部食品藥物管理署。2013。食米重金屬限量標準法。法規。衛生福利部食品藥物管理署。台灣。
衛生福利部食品藥物管理署。2013。包裝飲用水及盛裝飲用水衛生標準法規。衛生福利部食品藥物管理署。台灣。
衛生福利部食品藥物管理署。2016。蔬果植物類重金屬限量標準法。法規。衛生福利部食品藥物管理署。台灣。
衛生福利部食品藥物管理署2013。食鹽衛生標準法。法規。衛生福利部食品藥物管理署。台灣。
衛生福利部食品藥物管理署。2013。藻類食品衛生標準法,法規。衛生福利部食品藥物管理署。台灣。
衛生福利部食品藥物管理署。2013。冰類衛生標準法。法規。衛生福利部食品藥物管理署。台灣。
衛生福利部食品藥物管理署。2013。食用油脂類衛生標準法。法規。衛生福利部食品藥物管理署。台灣。
羅錦泉。2016。職業性汞中毒認定參考指引。台灣。
衛生福利部食品藥物管理署。2014。重金屬檢驗方法總則。台灣。
行政院環境保護署。2005。環署檢字第0940097080號公告水中汞檢測方法-冷蒸氣原子吸收光譜法。台灣。
徐夢苹。2017。紙基晶片應用於全血/血清中肌酸酐、白蛋白與尿液中肌酸酐之檢測。國立屏東科技大學生物機電工程研究所碩士論文。屏東。柯建亘。2017。快速微流體紙基晶片系統應用於食品添加物中二氧化硫之檢測。國立屏東科技大學生物機電工程研究所碩士論文。屏東。吳姵儀。2018。亞硝酸鹽紙基檢測系統之開發。國立高雄海洋科技大學水產食品科學研究所碩士論文。高雄。施惟馨。2019。微流體紙基晶片系統結合銀奈米粒子應用於食品中重金屬汞離子檢測。國立屏東科技大學生物機電工程研究所碩士論文。屏東。Alexis, F., Pridgen, E., Molnar, L. K., &Farokhzad, O. C. (2008). Factors affecting the clearance and biodistribution of polymeric nanoparticles. Molecular Pharmaceutics.
Almeida, M. I. G. S., Jayawardane, B. M., Kolev, S. D., &McKelvie, I. D. (2018). Developments of microfluidic paper-based analytical devices (μPADs) for water analysis: A review. Talanta.
Alqadi, M. K., Abo Noqtah, O. A., Alzoubi, F. Y., Alzouby, J., &Aljarrah, K. (2014). PH effect on the aggregation of silver nanoparticles synthesized by chemical reduction. Materials Science- Poland.
Andreescu, S., Gheorghiu, M., Emrah Özel, R., &Wallace, K. N. (2011). Biotechnology and Nanotechnology Risk Assessment: Minding and Managing the Potential Threats around Us. ACS Symposium Series.
Ashraf, J. M., Ansari, M. A., Khan, H. M., Alzohairy, M. A., &Choi, I. (2016). Green synthesis of silver nanoparticles and characterization of their inhibitory effects on AGEs formation using biophysical techniques. Scientific Reports.
Bastús, N. G., Merkoçi, F., Piella, J., &Puntes, V. (2014). Synthesis of highly monodisperse citrate-stabilized silver nanoparticles of up to 200 nm: Kinetic control and catalytic properties. Chemistry of Materials.
Ben-Efraim, Y., &Avnir, D. (2013). Organic Ag-Hg amalgam composite materials. Acta Materialia.
Benelmekki, M. (2015). Designing hybrid nanoparticles. In Designing Hybrid Nanoparticles.
Biswal, A. K., &Misra, P. K. (2020). Biosynthesis and characterization of silver nanoparticles for prospective application in food packaging and biomedical fields. Materials Chemistry and Physics.
Bloxham, M. J., Hill, S. J., &Worsfold, P. J. (1996). Determination of mercury in filtered sea-water by flow injection with on-line oxidation and atomic fluorescence spectrometric detection. Journal of Analytical Atomic Spectrometry.
Boening, D. W. (2000). Ecological effects, transport, and fate of mercury: A general review. Chemosphere.
Caballero, A., Martínez, R., Lloveras, V., Ratera, I., Vidal-Gancedo, J., Wurst, K., Tárraga, A., Molina, P., &Veciana, J. (2005). Highly selective chromogenic and redox or fluorescent sensors of Hg 2+ in aqueous environment based on 1,4-disubstituted azines. Journal of the American Chemical Society.
Carrilho, E., Martinez, A. W., &Whitesides, G. M. (2009). Understanding wax printing: A simple micropatterning process for paper-based microfluidics. Analytical Chemistry.
Chen, J. I. L., Chen, Y., &Ginger, D. S. (2010). Plasmonic nanoparticle dimers for optical sensing of DNA in complex media. Journal of the American Chemical Society.
Chen, G. H., Chen, W. Y., Yen, Y. C., Wang, C. W., Chang, H. T., &Chen, C. F. (2014). Detection of mercury(II) ions using colorimetric gold nanoparticles on paper-based analytical devices. Analytical Chemistry.
Chen, C., &Dong, T. (2015). Microfluidic paper-based analytical devices for colorimetric detection of urinary tract infection biomarkers on adult diapers. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS.
Chen, W., Fang, X., Li, H., Cao, H., &Kong, J. (2016). A Simple Paper-Based Colorimetric Device for Rapid Mercury(II) Assay. Scientific Reports.
Chen, K., He, Y., Srinivasakannan, C., Li, S., Yin, S., Peng, J., Guo, S., &Zhang, L. (2019). Characterization of the interaction of rare earth elements with P507 in a microfluidic extraction system using spectroscopic analysis. Chemical Engineering Journal.
Chen, S. C., Liu, C. C., Wang, Y. N., Fu, L. M., &Shih, S. H. (2018). An integrated microfluidic loop-mediated isothermal amplification platform for koi herpesvirus detection. Chemical Engineering Journal.
Chouhan, N. (2018). Silver Nanoparticles: Synthesis, Characterization and Applications. In Silver Nanoparticles - Fabrication, Characterization and Applications.
Clarkson, T. W., &Magos, L. (2006). The toxicology of mercury and its chemical compounds. In Critical Reviews in Toxicology.
Dayao, L. A. N., Liu, C. C., Hsu, S. Y., Tayo, L. L., Ju, W. J., &Fu, L. M. (2019). Multifunctional microchip-based distillation apparatus II - Aerated distillation for sulfur dioxide detection. Analytica Chimica Acta.
deOliveira, R. A. G., Camargo, F., Pesquero, N. C., &Faria, R. C. (2017). A simple method to produce 2D and 3D microfluidic paper-based analytical devices for clinical analysis. Analytica Chimica Acta.
Dong, H., Wen, B., &Melnik, R. (2014). Relative importance of grain boundaries and size effects in thermal conductivity of nanocrystalline materials. Scientific Reports.
Dou, M., Dominguez, D. C., Li, X., Sanchez, J., &Scott, G. (2014). A versatile PDMS/paper hybrid microfluidic platform for sensitive infectious disease diagnosis. Analytical Chemistry, 86(15), 7978–7986.
Dou, M., Sanjay, S. T., Benhabib, M., Xu, F., &Li, X. J. (2015). Low-cost bioanalysis on paper-based and its hybrid microfluidic platforms. Talanta.
Dubey, S. P., Lahtinen, M., &Sillanpää, M. (2010). Tansy fruit mediated greener synthesis of silver and gold nanoparticles. Process Biochemistry.
Ekino, S., Susa, M., Ninomiya, T., Imamura, K., &Kitamura, T. (2007). Minamata disease revisited: An update on the acute and chronic manifestations of methyl mercury poisoning. Journal of the Neurological Sciences.
Elsadek, B., &Kratz, F. (2012). Impact of albumin on drug delivery - New applications on the horizon. In Journal of Controlled Release.
Erxleben, H., &Ruzicka, J. (2005). Atomic absorption spectroscopy for mercury, automated by sequential injection and miniaturized in lab-on-valve system. Analytical Chemistry.
Fernández, Z. H., Valcárcel Rojas, L. A., Álvarez, A. M., Estevez Álvarez, J. R., Araújo dos Santos, J., González, I. P., González, M. R., Macias, N. A., Sánchez, D. L., &Torres, D. H. (2015). Application of Cold Vapor-Atomic Absorption (CVAAS) Spectrophotometry and Inductively Coupled Plasma-Atomic Emission Spectrometry methods for cadmium, mercury and lead analyses of fish samples. Validation of the method of CVAAS. Food Control.
Fernando, I., &Zhou, Y. (2019). Impact of pH on the stability, dissolution and aggregation kinetics of silver nanoparticles. Chemosphere.
Feynman, R. (1959). Conclusion : “ Plenty of Room at the Bottom .” Engineering and Science 22–36.
Fisher, J. (2003). Elemental mercury and inorganic mercury compounds : human health aspects.
FRENS, G. (1973). Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions. Nature Physical Science.
Fu, L. M., Liu, C. C., Yang, C. E., Wang, Y. N., &Ko, C. H. (2019). A PET/paper chip platform for high resolution sulphur dioxide detection in foods. Food Chemistry, 286(August 2018), 316–321.
Gallibu, C., Gallibu, C., Avoundjian, A., &Gomez, F. A. (2016). Easily fabricated microfluidic devices using permanent marker inks for enzyme assays. Micromachines.
Ge, L., Yan, J., Song, X., Yan, M., Ge, S., &Yu, J. (2012). Three-dimensional paper-based electrochemiluminescence immunodevice for multiplexed measurement of biomarkers and point-of-care testing. Biomaterials.
Graf, C., Vossen, D. L. J., Imhof, A., &VanBlaaderen, A. (2003). A general method to coat colloidal particles with silica. Langmuir.
Guadarrama-Fernández, L., Novell, M., Blondeau, P., &Andrade, F. J. (2018). A disposable, simple, fast and low-cost paper-based biosensor and its application to the determination of glucose in commercial orange juices. Food Chemistry.
Guo, J. feng, Huo, D. qun, Yang, M., Hou, C. jun, Li, J. jie, Fa, H. bao, Luo, H. bo, &Yang, P. (2016). Colorimetric detection of Cr (VI) based on the leaching of gold nanoparticles using a paper-based sensor. Talanta.
Hajizadeh, S., Farhadi, K., Forough, M., &Sabzi, R. E. (2011). Silver nanoparticles as a cyanide colorimetric sensor in aqueous media. Analytical Methods.
Hansen, J. C., &Danscher, G. (1997). Organic mercury: An environmental threat to the health of dietary-exposed societies? In Reviews on Environmental Health.
Harada, M. (1995). Minamata disease: Methylmercury poisoning in Japan caused by environmental pollution. Critical Reviews in Toxicology.
Henglein, A., &Giersig, M. (1999). Formation of Colloidal Silver Nanoparticles: Capping Action of Citrate Arnim Henglein. Journal of Physical Chemistry B.
He, Y., Gao, Q., Wu, W.Bin, Nie, J., &Fu, J. Z. (2016). 3D printed paper-based microfluidic analytical devices. Micromachines.
Hou, C. Y., Fu, L. M., Ju, W. J., &Wu, P. Y. (2020). Microfluidic colorimetric system for nitrite detection in foods. Chemical Engineering Journal, 398(May), 125573.
Hsu, S. Y., Liu, C. C., Yang, C. E., &Fu, L. M. (2019). Multifunctional microchip-based distillation apparatus I - Steam distillation for formaldehyde detection. Analytica Chimica Acta.
Hu, S. W., Qiao, S., Xu, B. Y., Peng, X., Xu, J. J., &Chen, H. Y. (2017). Dual-Functional Carbon Dots Pattern on Paper Chips for Fe3+ and Ferritin Analysis in Whole Blood. Analytical Chemistry.
Jeong, Y., Lim, D. W., &Choi, J. (2014). Assessment of size-dependent antimicrobial and cytotoxic properties of silver nanoparticles. Advances in Materials Science and Engineering.
Jiang, P., He, M., Shen, L., Shi, A., &Liu, Z. (2017). A paper-supported aptasensor for total IgE based on luminescence resonance energy transfer from upconversion nanoparticles to carbon nanoparticles. Sensors and Actuators, B: Chemical.
Jin, L., Hao, Z., Zheng, Q., Chen, H., Zhu, L., Wang, C., Liu, X., &Lu, C. (2020). A facile microfluidic paper-based analytical device for acetylcholinesterase inhibition assay utilizing organic solvent extraction in rapid detection of pesticide residues in food. Analytica Chimica Acta.
Kaewarsa, P., Laiwattanapaisal, W., Palasuwan, A., &Palasuwan, D. (2017). A new paper-based analytical device for detection of Glucose-6-phosphate dehydrogenase deficiency. Talanta.
Kakoti, A., Siddiqui, M. F., &Goswami, P. (2015). A low cost design and fabrication method for developing a leak proof paper based microfluidic device with customized test zone. Biomicrofluidics.
Kataria, R., Sethuraman, K., Vashisht, D., Vashisht, A., Mehta, S. K., &Gupta, A. (2019). Colorimetric detection of mercury ions based on anti-aggregation of gold nanoparticles using 3, 5-dimethyl-1-thiocarboxamidepyrazole. Microchemical Journal.
Kenneth Barbalace. Periodic Table of Elements - Mercury - Hg. EnvironmentalChemistry.com. 1995 - 2020.
Kora, A. J., Sashidhar, R. B., &Arunachalam, J. (2010). Gum kondagogu (Cochlospermum gossypium): A template for the green synthesis and stabilization of silver nanoparticles with antibacterial application. Carbohydrate Polymers, 82(3), 670–679.
Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., VanderElst, L., &Muller, R. N. (2008). Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations and biological applications. Chemical Reviews.
Lee, J. C., Kim, W., &Choi, S. (2017). Fabrication of a SERS-encoded microfluidic paper-based analytical chip for the point-of-assay of wastewater. International Journal of Precision Engineering and Manufacturing - Green Technology.
Lee, C. Y., &Fu, L. M. (2018). Recent advances and applications of micromixers. In Sensors and Actuators, B: Chemical.
Leila Chrystall and Andrew Rumsby Pattle Delamore Partners. 2009. Mercury Inventory for NewZealand 2008.Ministry for the Environment.
Li, Z., Yang, J., Zhu, L., &Tang, W. (2016). Fabrication of paper micro-devices with wax jetting. RSC Advances, 6(22), 17921–17928.
Chen, G. H., Chen, W. Y., Yen, Y. C., Wang, C. W., Chang, H. T., &Chen, C. F. (2014). Detection of mercury(II) ions using colorimetric gold nanoparticles on paper-based analytical devices. Analytical Chemistry. https://doi.org/10.1021/ac5008688
Chen, W., Fang, X., Li, H., Cao, H., &Kong, J. (2016). A Simple Paper-Based Colorimetric Device for Rapid Mercury(II) Assay. Scientific Reports. https://doi.org/10.1038/srep31948
Fu, L. M., Liu, C. C., Yang, C. E., Wang, Y. N., &Ko, C. H. (2019). A PET/paper chip platform for high resolution sulphur dioxide detection in foods. Food Chemistry, 286(August 2018), 316–321. https://doi.org/10.1016/j.foodchem.2019.02.032
Guo, J. feng, Huo, D. qun, Yang, M., Hou, C. jun, Li, J. jie, Fa, H. bao, Luo, H. bo, &Yang, P. (2016). Colorimetric detection of Cr (VI) based on the leaching of gold nanoparticles using a paper-based sensor. Talanta. https://doi.org/10.1016/j.talanta.2016.09.032
Hou, C. Y., Fu, L. M., Ju, W. J., &Wu, P. Y. (2020). Microfluidic colorimetric system for nitrite detection in foods. Chemical Engineering Journal, 398(May), 125573. https://doi.org/10.1016/j.cej.2020.125573
Li, M., Cao, R., Nilghaz, A., Guan, L., Zhang, X., &Shen, W. (2015). “Periodic-table-style” paper device for monitoring heavy metals in water. Analytical Chemistry.
Liu, C. C., Wang, Y. N., Fu, L. M., &Chen, K. L. (2018). Microfluidic paper-based chip platform for benzoic acid detection in food. Food Chemistry.
Loureiro, A., G. Azoia, N., C. Gomes, A., &Cavaco-Paulo, A. (2016). Albumin-Based Nanodevices as Drug Carriers. Current Pharmaceutical Design.
Lu, C. Y., Yan, X. P., Zhang, Z. P., Wang, Z. P., &Liu, L. W. (2004). Flow injection on-line sorption preconcentration coupled with hydride generation atomic fluorescence spectrometry using a polytetrafluoroethylene fiber-packed microcolumn for determination of Se(IV) in natural water. Journal of Analytical Atomic Spectrometry.
Ma, E. (2003). Controlling plastic instability. Nature Materials.
Manivannan, S., &Ramaraj, R. (2013). Silver nanoparticles embedded in cyclodextrin-silicate composite and their applications in Hg(ii) ion and nitrobenzene sensing. Analyst.
Marín-Barroso, E., Moreira, C. M., Messina, G. A., Bertolino, F. A., Alderete, M., Soler-Illia, G. J. A. A., Raba, J., &Pereira, S.V. (2018). Paper based analytical device modified with nanoporous material for the fluorescent sensing of gliadin content in different food samples. Microchemical Journal.
Marsousi, S., Karimi-Sabet, J., Moosavian, M. A., &Amini, Y. (2019). Liquid-liquid extraction of calcium using ionic liquids in spiral microfluidics. Chemical Engineering Journal.
Martinez, A. W., Phillips, S. T., Butte, M. J., &Whitesides, G. M. (2007). Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angewandte Chemie - International Edition.
Martinez, A. W., Phillips, S. T., Wiley, B. J., Gupta, M., &Whitesides, G. M. (2008). FLASH: A rapid method for prototyping paper-based microfluidic devices. Lab on a Chip.
Martínez, R., Navarro Poupard, M. F., Álvarez, A., Soprano, E., Migliavacca, M., Carrillo-Carrión, C., Polo, E., Pelaz, B., &Pino, P.del. (2020). Nanoparticle behavior and stability in biological environments. Nanoparticles for Biomedical Applications, 5–18.
Mason, R. P., Choi, A. L., Fitzgerald, W. F., Hammerschmidt, C. R., Lamborg, C. H., Soerensen, A. L., &Sunderland, E. M. (2012). Mercury biogeochemical cycling in the ocean and policy implications. Environmental Research.
Mock, J. J., Barbic, M., Smith, D. R., Schultz, D. A., &Schultz, S. (2002). Shape effects in plasmon resonance of individual colloidal silver nanoparticles. Journal of Chemical Physics.
Mohammed Fayaz, A., Balaji, K., Kalaichelvan, P. T., &Venkatesan, R. (2009). Fungal based synthesis of silver nanoparticles-An effect of temperature on the size of particles. Colloids and Surfaces B: Biointerfaces.
Mohammadi, S., Maeki, M., Mohamadi, R. M., Ishida, A., Tani, H., &Tokeshi, M. (2015). An instrument-free, screen-printed paper microfluidic device that enables bio and chemical sensing. Analyst.
Morris, T., Copeland, H., McLinden, E., Wilson, S., &Szulczewski, G. (2002). The effects of mercury adsorption on the optical response of size-selected gold and silver nanoparticles. Langmuir.
Müller, R. H., &Clegg, D. L. (1949). Automatic paper chromatography. Analytical Chemistry.
Mulvaney, P. (1996). Surface plasmon spectroscopy of nanosized metal particles. Langmuir.
Nichols, K. P., Pompano, R. R., Li, L., Gelis, A.V., &Ismagilov, R. F. (2011). Toward mechanistic understanding of nuclear reprocessing chemistries by quantifying lanthanide solvent extraction kinetics via microfluidics with constant interfacial area and rapid mixing. Journal of the American Chemical Society.
Nikam, A.V., Prasad, B. L. V., &Kulkarni, A. A. (2018). Wet chemical synthesis of metal oxide nanoparticles: A review. CrystEngComm.
Nowack, B., &Bucheli, T. D. (2007). Occurrence, behavior and effects of nanoparticles in the environment. In Environmental Pollution.
Noiphung, J., Songjaroen, T., Dungchai, W., Henry, C. S., Chailapakul, O., &Laiwattanapaisal, W. (2013). Electrochemical detection of glucose from whole blood using paper-based microfluidic devices. Analytica Chimica Acta.
Nuchtavorn, N., &Macka, M. (2016). A novel highly flexible, simple, rapid and low-cost fabrication tool for paper-based microfluidic devices (μPADs) using technical drawing pens and in-house formulated aqueous inks. Analytica Chimica Acta.
Organization, W. H., &Safety, I. P. on C. (1991). Inorganic mercury / published under the joint sponsorship of the United Nations Environment Programme, the International Labour Organisation, and the World Health Organization ; first draft prepared by L. Friberg. World Health Organization.
Petryayeva, E., &Krull, U. J. (2011). Localized surface plasmon resonance: Nanostructures, bioassays and biosensing-A review. In Analytica Chimica Acta.
Philip, D. (2009). Biosynthesis of Au, Ag and Au-Ag nanoparticles using edible mushroom extract. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy.
R.vonBurg. (1995). Inorganic mercury. Journal of Applied Toxicology.
Raji, V., Chakraborty, M., &Parikh, P. A. (2012). Synthesis of Starch-Stabilized Silver Nanoparticles and Their Antimicrobial Activity. Particulate Science and Technology, 30(6), 565–577.
Renuka, R., Devi, K. R., Sivakami, M., Thilagavathi, T., Uthrakumar, R., &Kaviyarasu, K. (2020). Biosynthesis of silver nanoparticles using phyllanthus emblica fruit extract for antimicrobial application. Biocatalysis and Agricultural Biotechnology.
Risher, J., &DeWoskin, R. (1999). Report: Toxicological profile for mercury. U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES. Public Health Service. Agency for Toxic Substances and Disease Registry, March, 1–676.
Salata, O.V. (2004). Applications of nanoparticles in biology and medicine. In Journal of Nanobiotechnology.
Salentijn, G. I. J., Hamidon, N. N., &Verpoorte, E. (2016). Solvent-dependent on/off valving using selectively permeable barriers in paper microfluidics. Lab on a Chip, 16(6), 1013–1021.
Sangaonkar, G. M., Desai, M. P., Dongale, T. D., &Pawar, K. D. (2020). Selective interaction between phytomediated anionic silver nanoparticles and mercury leading to amalgam formation enables highly sensitive, colorimetric and memristor-based detection of mercury. Scientific Reports.
Santra, S., Zhang, P., Wang, K., Tapec, R., &Tan, W. (2001). Conjugation of biomolecules with luminophore-doped silica nanoparticles for photostable biomarkers. Analytical Chemistry.
Sasidharan, D., Namitha, T. R., Johnson, S. P., Jose, V., &Mathew, P. (2020). Synthesis of silver and copper oxide nanoparticles using Myristica fragrans fruit extract: Antimicrobial and catalytic applications. Sustainable Chemistry and Pharmacy.
Seaton, A., &Bishop, C. M. (1978). pneumonitis. November 1977, 258–261.
Semiquantitative Specific Test Paper for Glucose in Urine. Analytical Chemistry.
Shaligram, N. S., Bule, M., Bhambure, R., Singhal, R. S., Singh, S. K., Szakacs, G., &Pandey, A. (2009). Biosynthesis of silver nanoparticles using aqueous extract from the compactin producing fungal strain. Process Biochemistry.
Shi, H., Nie, K., Dong, B., Long, M., Xu, H., &Liu, Z. (2019). Recent progress of microfluidic reactors for biomedical applications. In Chemical Engineering Journal.
Slikker, W., Wang, C., &Paule, M. G. (2018). Handbook of developmental neurotoxicology. In Handbook of Developmental Neurotoxicology.
Solis, M. T., Yuen, E., Cortez, P. S., &Goebel, P. J. (2000). Family poisoned by mercury vapor inhalation. American Journal of Emergency Medicine.
Sriram, G., Bhat, M. P., Patil, P., Uthappa, U. T., Jung, H.-Y., Altalhi, T., Kumeria, T., Aminabhavi, T. M., Pai, R. K., Madhuprasad, &Kurkuri, M. D. (2017). Paper-based microfluidic analytical devices for colorimetric detection of toxic ions: A review. TrAC Trends in Analytical Chemistry, 93, 212–227.
Su, M., Ge, L., Kong, Q., Zheng, X., Ge, S., Li, N., Yu, J., &Yan, M. (2015). Cyto-sensing in electrochemical lab-on-paper cyto-device for in-situ evaluation of multi-glycan expressions on cancer cells. Biosensors and Bioelectronics.
Sumesh, E., Bootharaju, M. S., Anshup, &Pradeep, T. (2011). A practical silver nanoparticle-based adsorbent for the removal of Hg2+ from water. Journal of Hazardous Materials.
Talapin, D.V., &Shevchenko, E.V. (2016). Introduction: Nanoparticle chemistry. Chemical Reviews, 116(18), 10343–10345.
Taprab, N., &Sameenoi, Y. (2019). Rapid screening of formaldehyde in food using paper-based titration. Analytica Chimica Acta.
Tchounwou, P. B., Ayensu, W. K., Ninashvili, N., &Sutton, D. (2003). Environmental exposure to mercury and its toxicopathologic implications for public health. In Environmental Toxicology.
Tenda, K., Ota, R., Yamada, K., Henares, T. G., Suzuki, K., &Citterio, D. (2016). High-resolution microfluidic paper-based analytical devices for sub-microliter sample analysis. Micromachines.
Terry, S. C., Herman, J. H., &Angell, J. B. (1979). A Gas Chromatographic Air Analyzer Fabricated on a Silicon Wafer. IEEE Transactions on Electron Devices.
TIMBRELL, J. A. (1981). Casarett and Doull’s Toxicology: The Basic Science of Poisons. Biochemical Society Transactions.
Tiwari, J. N., Tiwari, R. N., &Kim, K. S. (2012). Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. In Progress in Materials Science.
Todescato, F., Fortunati, I., Minotto, A., Signorini, R., Jasieniak, J. J., &Bozio, R. (2016). Engineering of semiconductor nanocrystals for light emitting applications. In Materials.
Uddin, I., Ahmad, K., Khan, A. A., &Kazmi, M. A. (2017). Synthesis of silver nanoparticles using Matricaria recutita (Babunah) plant extract and its study as mercury ions sensor. Sensing and Bio-Sensing Research.
UNEP DTIE Chemicals Branch, &WHO Department of Food Safety, Z. and F. D. (2008). Guidance for Identifying Populations At Risk From Mercury Exposure. Exposure.
Vasileva, P., Alexandrova, T., &Karadjova, I. (2017). Application of starch-stabilized silver nanoparticles as a colorimetric sensor for mercury(II) in 0.005 mol/L nitric acid. Journal of Chemistry, 2017.
Wang, S., Ge, L., Song, X., Yu, J., Ge, S., Huang, J., &Zeng, F. (2012). Paper-based chemiluminescence ELISA: Lab-on-paper based on chitosan modified paper device and wax-screen-printing. Biosensors and Bioelectronics.
Warkany, J., &Hubbard, D. M. (1951). Adverse mercurial reactions in the form of acrodynia and related conditions. A.M.A. American Journal of Diseases of Children.
Weinstein, M., &Bernstein, S. (2003). Pink ladies: Mercury poisoning in twin girls. In CMAJ.
Wexler, P. (2005). Encyclopedia of toxicology. In Encyclopedia of Toxicology.
Wu, L., Ma, C., Ge, L., Kong, Q., Yan, M., Ge, S., &Yu, J. (2015). Paper-based electrochemiluminescence origami cyto-device for multiple cancer cells detection using porous AuPd alloy as catalytically promoted nanolabels. Biosensors and Bioelectronics.
Xue, Y., Ma, L., Zhang, L., Zhao, W., Li, Z., &Li, Q. (2020). A green, rapid and effcient dual-sensors for highly selective and sensitive detection of cation (Hg2+) and anion (S2-) ions based on cms/agnps composites. Polymers, 12(1).
Yang, R. J., Fu, L. M., &Hou, H. H. (2018). Review and perspectives on microfluidic flow cytometers. In Sensors and Actuators, B: Chemical.
Yorifuji, T., &Tsuda, T. (2014). Minamata. In Encyclopedia of Toxicology: Third Edition.
Zhang, Y., Li, T., Ren, T., Fang, D., &He, J. (2017). Hydrophobic/lipophobic barrier capable of confining aggressive liquids for paper-based assay. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 520, 544–549.
Zhang, S., Wei, S., Cheng, H., &Rong, B. (2019). A highly sensitive colorimetric sensor for Hg2+ detection based on the oxidative enzyme mimics-like activity of hierarchical porous carbon@chitosan-modified silver nanoparticles. Journal of King Saud University - Science.
Zhou, W., Tian, Y. F., Yin, B. C., &Ye, B. C. (2017). Simultaneous Surface-Enhanced Raman Spectroscopy Detection of Multiplexed MicroRNA Biomarkers. Analytical Chemistry.
Zhuang, J., &Gentry, R. W. (2011). Environmental application and risks of nanotechnology: A balanced view. ACS Symposium Series.