|
1.Abinandan, S., Subashchandrabose, S.R., Venkateswarlu, K., Megharaj, M., 2018. Microalgae–bacteria biofilms: a sustainable synergistic approach in remediation of acid mine drainage. Applied microbiology and biotechnology 102, 1131–1144. 2.Agboola, O., Mokrani, T., Sadiku, E.R., Kolesnikov, A., Olukunle, O.I., Maree, J.P., 2017. Characterization of Two Nanofiltration Membranes for the Separation of Ions from Acid Mine Water. Mine Water Environ 36, 401–408. https://doi.org/10.1007/s10230-016-0427-z 3.Alhassan, S.I., He, Y., Huang, L., Wu, B., Yan, L., Deng, H., Wang, H., 2020. A review on fluoride adsorption using modified bauxite: Surface modification and sorption mechanisms perspectives. Journal of Environmental Chemical Engineering 8, 104532. https://doi.org/10.1016/j.jece.2020.104532 4.Álvarez-Ayuso, E., Garcı́a-Sánchez, A., Querol, X., 2003. Purification of metal electroplating waste waters using zeolites. Water Research 37, 4855–4862. https://doi.org/10.1016/j.watres.2003.08.009 5.Anako Opotu, L., Mohammed Inuwa, I., Wong, S., Ngadi, N., Amirah Razmi, F., 2022. Errors and inconsistencies in scientific reporting of aqueous phase adsorption of contaminants: A bibliometric study. Cleaner Materials 5, 100100. https://doi.org/10.1016/j.clema.2022.100100 6.Ao, H., Cao, W., Hong, Y., Wu, J., Wei, L., 2020. Adsorption of sulfate ion from water by zirconium oxide-modified biochar derived from pomelo peel. Science of The Total Environment 708, 135092. https://doi.org/10.1016/j.scitotenv.2019.135092 7.Ardejani, F.D., Karami, G.H., Assadi, A.B., Dehghan, R.A., 2008. Hydrogeochemical investigations of the Shour River and groundwater affected by acid mine drainage in Sarcheshmeh porphyry copper mine, in: 10th International Mine Water Association Congress. pp. 235–238. 8.Bai, H., Kang, Y., Quan, H., Han, Y., Sun, J., Feng, Y., 2013. Treatment of acid mine drainage by sulfate reducing bacteria with iron in bench scale runs. Bioresource Technology 128, 818–822. https://doi.org/10.1016/j.biortech.2012.10.070 9.Baker, H.M., Ghanem, R., 2009. Evaluation of treated natural zeolite for the removal of o-chlorophenol from aqueous solution. Desalination 249, 1265–1272. https://doi.org/10.1016/j.desal.2009.02.059 10.Batjargal, T., Yang, J.-S., Kim, D.-H., Baek, K., 2011. Removal Characteristics of Cd(II), Cu(II), Pb(II), and Zn(II) by Natural Mongolian Zeolite through Batch and Column Experiments. Separation Science and Technology 46, 1313–1320. https://doi.org/10.1080/01496395.2010.551394 11.Benner, S.G., Blowes, D.W., Ptacek, C.J., 1997. A Full-Scale Porous Reactive Wall for Prevention of Acid Mine Drainage. Groundwater Monitoring & Remediation 17, 99–107. https://doi.org/10.1111/j.1745-6592.1997.tb01269.x 12.Bologo, V., Maree, J.P., Louw, W.J., 2010. Treatment of mine water for sulphate and metal removal using magnesium hydroxide and barium hydroxide. 13.Boyle, R., 1979. The geochemistry of gold and its deposits. Geological Survey of Canada. Bulletin 280, 584. 14.Brix, K.V., Volosin, J.S., Adams, W.J., Reash, R.J., Carlton, R.G., McIntyre, D.O., 2001. Effects of sulfate on the acute toxicity of selenate to freshwater organisms. Environmental Toxicology and Chemistry 20, 1037–1045. https://doi.org/10.1002/etc.5620200514 15.Brunauer, S., Emmett, P.H., Teller, E., 1938. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 60, 309–319. https://doi.org/10.1021/ja01269a023 16.Cao, W., Dang, Z., Zhou, X.-Q., Yi, X.-Y., Wu, P.-X., Zhu, N.-W., Lu, G.-N., 2011. Removal of sulphate from aqueous solution using modified rice straw: Preparation, characterization and adsorption performance. Carbohydrate Polymers 85, 571–577. https://doi.org/10.1016/j.carbpol.2011.03.016 17.Chapelle, F.H., 2000. Ground-water microbiology and geochemistry. John Wiley & Sons. 18.Chen, W., Liu, H., 2014. Adsorption of sulfate in aqueous solutions by organo-nano-clay: Adsorption equilibrium and kinetic studies. J. Cent. South Univ. 21, 1974–1981. https://doi.org/10.1007/s11771-014-2145-7 19.Cohen, M.D., 1983. Theories of expansion in sulfoaluminate - type expansive cements: Schools of thought. Cement and Concrete Research 13, 809–818. https://doi.org/10.1016/0008-8846(83)90082-0 20.Coombs, D.S., Alberti, A., Armbruster, T., Artioli, G., Colella, C., Galli, E., Grice, J.D., Liebau, F., 1998. Recommended nomenclature for zeolite minerals: report of the subcommittee on zeolites of the International Mineralogical Association, Commission on New Minerals and Mineral Names 39. 21.Crittenden, J.C., Trussell, R.R., Hand, D.W., Howe, K.J., Tchobanoglous, G., 2012. MWH’s Water Treatment: Principles and Design. John Wiley & Sons, Inc., Hoboken, NJ, USA. https://doi.org/10.1002/9781118131473 22.Cruciani, G., 2006. Zeolites upon heating: Factors governing their thermal stability and structural changes. Journal of Physics and Chemistry of Solids, SMEC 2005 67, 1973–1994. https://doi.org/10.1016/j.jpcs.2006.05.057 23.Del Ángel, P., Carreño, G., Nava, J.L., Martínez, M.T., Ortiz, J., 2014. Removal of arsenic and sulfates from an abandoned mine drainage by electrocoagulation. Influence of hydrodynamic and current density. Int. J. Electrochem. Sci 9, 710–719. 24.Desta, M.B., 2013. Batch Sorption Experiments: Langmuir and Freundlich Isotherm Studies for the Adsorption of Textile Metal Ions onto Teff Straw ( Eragrostis tef ) Agricultural Waste. Journal of Thermodynamics 2013, 1–6. https://doi.org/10.1155/2013/375830 25.Do, D.D., 1998. Adsorption analysis: equilibria and kinetics, Series on chemical engineering. Imperial College Press, London. 26.Dong, R., Liu, Y., Wang, X., Huang, J., 2011. Adsorption of Sulfate Ions from Aqueous Solution by Surfactant-Modified Palygorskite. J. Chem. Eng. Data 56, 3890–3896. https://doi.org/10.1021/je200544n 27.Duan, S., Liu, X., Wang, Y., Meng, Y., Alsaedi, A., Hayat, T., Li, J., 2017. Plasma surface modification of materials and their entrapment of water contaminant: A review. Plasma Processes and Polymers 14, 1600218. https://doi.org/10.1002/ppap.201600218 28.Feliczak-Guzik, A., 2018. Hierarchical zeolites: Synthesis and catalytic properties. Microporous and Mesoporous Materials 259, 33–45. https://doi.org/10.1016/j.micromeso.2017.09.030 29.Fernando, W.A.M., Ilankoon, I.M.S.K., Syed, T.H., Yellishetty, M., 2018. Challenges and opportunities in the removal of sulphate ions in contaminated mine water: A review. Minerals Engineering 117, 74–90. https://doi.org/10.1016/j.mineng.2017.12.004 30.Fleischer, M., 1954. The abundance and distribution of the chemical elements in the earth’s crust. J. Chem. Educ. 31, 446. https://doi.org/10.1021/ed031p446 31.Foucher, S., Battaglia-Brunet, F., Ignatiadis, I., Morin, D., 2001. Treatment by sulfate-reducing bacteria of Chessy acid-mine drainage and metals recovery. Chemical Engineering Science, 16th International Conference on Chemical Reactor Engineering 56, 1639–1645. https://doi.org/10.1016/S0009-2509(00)00392-4 32.Freundlich, H.M.F., 1906. Over the adsorption in solution. J. Phys. chem 57, 1100–1107. 33.Galton, F., 1886. Regression Towards Mediocrity in Hereditary Stature. The Journal of the Anthropological Institute of Great Britain and Ireland 15, 246–263. https://doi.org/10.2307/2841583 34.Geethamani, C.K., Ramesh, S.T., Gandhimathi, R., Nidheesh, P.V., 2014. Alkali-treated fly ash for the removal of fluoride from aqueous solutions. Desalination and Water Treatment 52, 3466–3476. https://doi.org/10.1080/19443994.2013.800825 35.Geldenhuys, A.J., Maree, J.P.,. De Beer, M.&. Hlabela P., 2003. An integrated limestone/lime process for partial sulphate removal. Journal of the Southern African Institute of Mining and Metallurgy 103, 345–353. https://doi.org/10.10520/AJA0038223X_2806 36.Ghaly, A.E., Ananthashankar, R., Alhattab, M., Ramakrishnan, V.V., 2014. Production, characterization and treatment of textile effluents: a critical review. J Chem Eng Process Technol 5, 1–19. 37.Giloteaux, L., Duran, R., Casiot, C., Bruneel, O., Elbaz-Poulichet, F., Goñi-Urriza, M., 2013. Three-year survey of sulfate-reducing bacteria community structure in Carnoulès acid mine drainage (France), highly contaminated by arsenic. FEMS Microbiology Ecology 83, 724–737. https://doi.org/10.1111/1574-6941.12028 38.Golomeova, M., Zendelska, A., 2016. Application of Some Natural Porous Raw Materials for Removal of Lead and Zinc from Aqueous Solutions, Microporous and Mesoporous Materials. IntechOpen. https://doi.org/10.5772/62347 39.Goyer, R.A., 1997. Toxic and Essential Metal Interactions. Annual Review of Nutrition 17, 37–50. https://doi.org/10.1146/annurev.nutr.17.1.37 40.Gray, N.F., 1997. Environmental impact and remediation of acid mine drainage: a management problem. Environmental Geology 30, 62–71. https://doi.org/10.1007/s002540050133 41.Gray, N.F., 1996. Field assessment of acid mine drainage contamination in surface and ground water. Environmental Geology 27, 358–361. 42.Guaya, D., Valderrama, C., Farran, A., Armijos, C., Cortina, J.L., 2015. Simultaneous phosphate and ammonium removal from aqueous solution by a hydrated aluminum oxide modified natural zeolite. Chemical Engineering Journal 271, 204–213. https://doi.org/10.1016/j.cej.2015.03.003 43.Guerra-Rodríguez, S., Rodríguez, E., Singh, D.N., Rodríguez-Chueca, J., 2018. Assessment of Sulfate Radical-Based Advanced Oxidation Processes for Water and Wastewater Treatment: A Review. Water 10, 1828. https://doi.org/10.3390/w10121828 44.Harsch, M.J., Lee, S.A., Goddard, M.R., Gardner, R.C., 2009. Optimized fermentation of grape juice by laboratory strains of Saccharomyces cerevisiae. FEMS Yeast Research 10, 72–82. https://doi.org/10.1111/j.1567-1364.2009.00580.x 45.Hermassi, M., Valderrama, C., Moreno, N., Font, O., Querol, X., Batis, N., Cortina, J.L., 2016. Powdered Ca-activated zeolite for phosphate removal from treated waste-water. Journal of Chemical Technology & Biotechnology 91, 1962–1971. https://doi.org/10.1002/jctb.4867 46.Ho, Y.S., McKay, G., 1999. Pseudo-second order model for sorption processes. Process Biochemistry 34, 451–465. https://doi.org/10.1016/S0032-9592(98)00112-5 47.Ho, Y.S., McKay, G., 1998. A Comparison of Chemisorption Kinetic Models Applied to Pollutant Removal on Various Sorbents. Process Safety and Environmental Protection 76, 332–340. https://doi.org/10.1205/095758298529696 48.Hong, S., Cannon, F.S., Hou, P., Byrne, T., Nieto-Delgado, C., 2014. Sulfate removal from acid mine drainage using polypyrrole-grafted granular activated carbon. Carbon 73, 51–60. https://doi.org/10.1016/j.carbon.2014.02.036 49.Inglezakis, V.J., Loizidou, M.D., Grigoropoulou, H.P., 2003. Ion exchange of Pb2+, Cu2+, Fe3+, and Cr3+ on natural clinoptilolite: selectivity determination and influence of acidity on metal uptake. Journal of Colloid and Interface Science 261, 49–54. https://doi.org/10.1016/S0021-9797(02)00244-8 50.Jialanella, G.L., 2010. Advances in bonding plastics, in: Dillard, D.A. (Ed.), Advances in Structural Adhesive Bonding, Woodhead Publishing in Materials. Woodhead Publishing, pp. 237–264. https://doi.org/10.1533/9781845698058.2.237 51.Kinnunen, P., Kyllönen, H., Kaartinen, T., Mäkinen, J., Heikkinen, J., Miettinen, V., 2018. Sulphate removal from mine water with chemical, biological and membrane technologies. Water Science and Technology 2017, 194–205. https://doi.org/10.2166/wst.2018.102 52.Krempa, H.M., Flickinger, A.K., 2017. Temporal changes in nitrogen and phosphorus concentrations with comparisons to conservation practices and agricultural activities in the Lower Grand River, Missouri and Iowa, and selected watersheds, 1969–2015. US Geological Survey. 53.Lagergreen, 1907. Zur Theorie der sogenannten Adsorption gelöster Stoffe. Zeitschrift für Chemie und Industrie der Kolloide 2, 15–15. https://doi.org/10.1007/BF01501332 54.Langmuir, I., 1918. The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical society 40, 1361–1403. 55.Lee, H.J., Kim, Y.M., Kweon, O.S., Kim, I.J., 2007. Structural and morphological transformation of NaX zeolite crystals at high temperature. Journal of the European Ceramic Society, Refereed Reports IX Conference & Exhibition of the European Ceramic Society 27, 561–564. https://doi.org/10.1016/j.jeurceramsoc.2006.04.156 56.LeVan, M.D., Vermeulen, T., 1981. Binary Langmuir and Freundlich isotherms for ideal adsorbed solutions. J. Phys. Chem. 85, 3247–3250. https://doi.org/10.1021/j150622a009 57.Li, X., Lin, J., Zhang, D., Xiong, Z., He, X., Yuan, M., Wang, M., 2020. Material flow analysis of titanium dioxide and sustainable policy suggestion in China. Resources Policy 67, 101685. https://doi.org/10.1016/j.resourpol.2020.101685 58.Li, Y., Li, Q., Zhang, G., Zeng, L., Cao, Z., Guan, W., Wang, L., 2018. Separation and recovery of scandium and titanium from spent sulfuric acid solution from the titanium dioxide production process. Hydrometallurgy 178, 1–6. https://doi.org/10.1016/j.hydromet.2018.01.019 59.Liang, Y., Ding, H., 2020. Mineral-TiO2 composites:Preparation and application in papermaking, paints and plastics. Journal of Alloys and Compounds 844, 156139. https://doi.org/10.1016/j.jallcom.2020.156139 60.Ljung, K., Maley, F., Cook, A., Weinstein, P., 2009. Acid sulfate soils and human health—A Millennium Ecosystem Assessment. Environment International 35, 1234–1242. https://doi.org/10.1016/j.envint.2009.07.002 61.Loganathan, P., Vigneswaran, S., Kandasamy, J., 2013. Enhanced removal of nitrate from water using surface modification of adsorbents – A review. Journal of Environmental Management 131, 363–374. https://doi.org/10.1016/j.jenvman.2013.09.034 62.Luo, X., Yan, Q., Wang, C., Luo, C., Zhou, N., Jian, C., 2015. Treatment of Ammonia Nitrogen Wastewater in Low Concentration by Two-Stage Ozonization. International Journal of Environmental Research and Public Health 12, 11975–11987. https://doi.org/10.3390/ijerph120911975 63.Madigan, M.T., Martinko, J.M., Parker, J., 2006. Brock biology of microorganisms. Pearson Prentice Hall Upper Saddle River, NJ. 64.Madzivire, G., Petrik, L.F., Gitari, W.M., Ojumu, T.V., Balfour, G., 2010. Application of coal fly ash to circumneutral mine waters for the removal of sulphates as gypsum and ettringite. Minerals Engineering, Special issue: Sustainability, Resource Conservation & Recycling 23, 252–257. https://doi.org/10.1016/j.mineng.2009.12.004 65.Mallatt, J., 1985. Fish Gill Structural Changes Induced by Toxicants and Other Irritants: A Statistical Review. Can. J. Fish. Aquat. Sci. 42, 630–648. https://doi.org/10.1139/f85-083 66.Maree, J.P., Hlabela, P., Nengovhela, R., Geldenhuys, A.J., Mbhele, N., Nevhulaudzi, T., Waanders, F.B., 2004. Treatment of Mine Water for Sulphate and Metal Removal Using Barium Sulphide. Mine Water Environ 23, 195–203. https://doi.org/10.1007/s10230-004-0062-y 67.Matijasevic, S., Zildzovic, S., Stojanovic, J., Djosic, M., Nikolic, J., Stojanovic, M., Labus, N., 2016. Removal of uranium (VI) from aqueous solution by acid modified zeolites. Zas Mat 57, 551–558. https://doi.org/10.5937/ZasMat1604551M 68.Miller, B.G., 2005. CHAPTER 3 - The Effect of Coal Usage on Human Health and the Environment, in: Miller, B.G. (Ed.), Coal Energy Systems. Academic Press, Burlington, pp. 77–122. https://doi.org/10.1016/B978-012497451-7/50003-6 69.Moret, A., Rubio, J., 2003. Sulphate and molybdate ions uptake by chitin-based shrimp shells. Minerals Engineering 16, 715–722. https://doi.org/10.1016/S0892-6875(03)00169-9 70.Motaung, S., Maree, J., De Beer, M., Bologo, L., Theron, D., Baloyi, J., 2008. Recovery of Drinking Water and By-products from Gold Mine Effluents. International Journal of Water Resources Development 24, 433–450. https://doi.org/10.1080/07900620802150475 71.Motsi, T., Rowson, N.A., Simmons, M.J.H., 2009. Adsorption of heavy metals from acid mine drainage by natural zeolite. International Journal of Mineral Processing 92, 42–48. https://doi.org/10.1016/j.minpro.2009.02.005 72.Müllauer, W., Beddoe, R.E., Heinz, D., 2013. Sulfate attack expansion mechanisms. Cement and Concrete Research 52, 208–215. https://doi.org/10.1016/j.cemconres.2013.07.005 73.Muyzer, G., Stams, A.J., 2008. The ecology and biotechnology of sulphate-reducing bacteria. Nature reviews microbiology 6, 441–454. 74.Namasivayam, C., Sangeetha, D., 2008. Application of coconut coir pith for the removal of sulfate and other anions from water. Desalination 219, 1–13. https://doi.org/10.1016/j.desal.2007.03.008 75.Namasivayam, C., Sureshkumar, M.V., 2007. Removal of Sulfate from Water and Wastewater by Surfactant-modified Coir Pith, An Agricultural SolidWaste’by Adsorption Methodology. Journal of Environmental Engineering and Management 17, 129. 76.Oliveira, C. da R., Rubio, J., 2007a. New basis for adsorption of ionic pollutants onto modified zeolites. Minerals Engineering 20, 552–558. https://doi.org/10.1016/j.mineng.2006.11.002 77.Oliveira, C. da R., Rubio, J., 2007b. Adsorption of ions onto treated natural zeolite. Mat. Res. 10, 407–412. https://doi.org/10.1590/S1516-14392007000400014 78.Oskarsson, A., 2015. Chapter 29 - Barium, in: Nordberg, G.F., Fowler, B.A., Nordberg, M. (Eds.), Handbook on the Toxicology of Metals (Fourth Edition). Academic Press, San Diego, pp. 625–634. https://doi.org/10.1016/B978-0-444-59453-2.00029-9 79.Park, I., Tabelin, C.B., Jeon, S., Li, X., Seno, K., Ito, M., Hiroyoshi, N., 2019. A review of recent strategies for acid mine drainage prevention and mine tailings recycling. Chemosphere 219, 588–606. https://doi.org/10.1016/j.chemosphere.2018.11.053 80.Pizarro, C., Escudey, M., Bravo, C., Gacitua, M., Pavez, L., 2021. Sulfate Kinetics and Adsorption Studies on a Zeolite/Polyammonium Cation Composite for Environmental Remediation. Minerals 11, 180. https://doi.org/10.3390/min11020180 81.Prelot, B., Araïssi, M., Gras, P., Marchandeau, F., Zajac, J., 2018. Contribution of calorimetry to the understanding of competitive adsorption of calcium, strontium, barium, and cadmium onto 4A type zeolite from two-metal aqueous solutions. Thermochimica Acta 664, 39–47. https://doi.org/10.1016/j.tca.2018.04.006 82.Raj, D., Maiti, S.K., 2020. Sources, bioaccumulation, health risks and remediation of potentially toxic metal(loid)s (As, Cd, Cr, Pb and Hg): an epitomised review. Environ Monit Assess 192, 108. https://doi.org/10.1007/s10661-019-8060-5 83.Rebello, S., Asok, A.K., Mundayoor, S., Jisha, M.S., 2014. Surfactants: toxicity, remediation and green surfactants. Environ Chem Lett 12, 275–287. https://doi.org/10.1007/s10311-014-0466-2 84.Ribelles, A., Carrasco, M.C., Rosety, M., Aldana, M., 1995. A Histochemical Study of the Biological Effects of Sodium Dodecyl Sulfate on the Intestine of the Gilthead Seabream, Sparus aurata L. Ecotoxicology and Environmental Safety 32, 131–138. https://doi.org/10.1006/eesa.1995.1093 85.Rintala, J., Sanz Martin, J.L., Lettinga, G., 1991. Thermophilic anaerobic treatment of sulfate-rich pulp and paper integrate process water. Water Science and Technology 24, 149–160. 86.Rosety-Rodríguez, M., Ordoñez, F.J., Roldan, S., Rosety, J.M., Rosety, M., Ribelles, A., Carrasco, C., Rosety, I., 2002. Acute effects of sodium dodecyl sulphate on the survival and on morpho-histochemical characteristics of the trunk kidney of juvenile turbot Scophthalmus maximus L. European Journal of Histochemistry 46, 179–84. https://doi.org/10.4081/1668 87.Runtti, H., Luukkonen, T., Niskanen, M., Tuomikoski, S., Kangas, T., Tynjälä, P., Tolonen, E.-T., Sarkkinen, M., Kemppainen, K., Rämö, J., Lassi, U., 2016. Sulphate removal over barium-modified blast-furnace-slag geopolymer. Journal of Hazardous Materials 317, 373–384. https://doi.org/10.1016/j.jhazmat.2016.06.001 88.Runtti, H., Tynjälä, P., Tuomikoski, S., Kangas, T., Hu, T., Rämö, J., Lassi, U., 2017. Utilisation of barium-modified analcime in sulphate removal: Isotherms, kinetics and thermodynamics studies. Journal of Water Process Engineering 16, 319–328. https://doi.org/10.1016/j.jwpe.2016.11.004 89.Ruthven, D.M., 1984. Principles of Adsorption and Adsorption Processes. Wiley-Interscience, New York. 90.Sadeghalvad, B., Khorshidi, N., Azadmehr, A., Sillanpää, M., 2021. Sorption, mechanism, and behavior of sulfate on various adsorbents: A critical review. Chemosphere 263, 128064. https://doi.org/10.1016/j.chemosphere.2020.128064 91.Sammut, J., Lines-Kelly, R., 2000. An introduction to acid sulfate soils. Environment Australia. 92.Sang, P., Wang, Y., Zhang, L., Chai, L., Wang, H., 2013. Effective adsorption of sulfate ions with poly(m-phenylenediamine) in aqueous solution and its adsorption mechanism. Transactions of Nonferrous Metals Society of China 23, 243–252. https://doi.org/10.1016/S1003-6326(13)62452-8 93.Santander, M., Cardozo, P., Valderrama, L.I., 2021. Removal of Sulfate Ions by Precipitation and Flotation. Ingeniería e Investigación 41, e90349–e90349. https://doi.org/10.15446/ing.investig.v41n3.90349 94.Searmsirimongkol, P., Rangsunvigit, P., Leethochawalit, M., Chavadej, S., 2011. Hydrogen production from alcohol distillery wastewater containing high potassium and sulfate using an anaerobic sequencing batch reactor. International Journal of Hydrogen Energy, 3rd Iranian Fuel Cell Seminar 36, 12810–12821. https://doi.org/10.1016/j.ijhydene.2011.07.080 95.Shahwan, T., 2015. Lagergren equation: Can maximum loading of sorption replace equilibrium loading? Chemical Engineering Research and Design 96, 172–176. https://doi.org/10.1016/j.cherd.2015.03.001 96.Sharma, M.K., Kumar, M., 2020. Sulphate contamination in groundwater and its remediation: an overview. Environ Monit Assess 192, 74. https://doi.org/10.1007/s10661-019-8051-6 97.Silva, A.M., Lima, R.M.F., Leão, V.A., 2012. Mine water treatment with limestone for sulfate removal. Journal of Hazardous Materials 221–222, 45–55. https://doi.org/10.1016/j.jhazmat.2012.03.066 98.Simonin, J.-P., 2016. On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chemical Engineering Journal 300, 254–263. https://doi.org/10.1016/j.cej.2016.04.079 99.Sing, K.S.W., 1985. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and Applied Chemistry 57, 603–619. https://doi.org/10.1351/pac198557040603 100.Song, X.H., Xu, R., Wang, K., 2013. The structural development of zeolite-templated carbon under pyrolysis. Journal of Analytical and Applied Pyrolysis 100, 153–157. https://doi.org/10.1016/j.jaap.2012.12.011 101.Sonune, A., Ghate, R., 2004. Developments in wastewater treatment methods. Desalination, Desalination Strategies in South Mediterranean Countries 167, 55–63. https://doi.org/10.1016/j.desal.2004.06.113 102.Speece, R.E., 1983. Anaerobic biotechnology for industrial wastewater treatment. Environmental science & technology 17, 416A-427A. 103.Sun, Y., Fang, Q., Dong, J., Cheng, X., Xu, J., 2011. Removal of fluoride from drinking water by natural stilbite zeolite modified with Fe(III). Desalination 277, 121–127. https://doi.org/10.1016/j.desal.2011.04.013 104.Suzuki, M., 1990. Adsorption engineering, Chemical engineering monographs. Kodansha ; Elsevier, Tokyo : Amsterdam ; New York. 105.Swenson, H., Stadie, N.P., 2019. Langmuir’s Theory of Adsorption: A Centennial Review. Langmuir 35, 5409–5426. https://doi.org/10.1021/acs.langmuir.9b00154 106.Taffarel, S.R., Rubio, J., 2009. On the removal of Mn2+ ions by adsorption onto natural and activated Chilean zeolites. Minerals Engineering 22, 336–343. https://doi.org/10.1016/j.mineng.2008.09.007 107.Tong, L., Fan, R., Yang, S., Li, C., 2021. Development and Status of the Treatment Technology for Acid Mine Drainage. Mining, Metallurgy & Exploration 38, 315–327. https://doi.org/10.1007/s42461-020-00298-3 108.USEPA, 2002. Drinking Water Advisory: Consumer Acceptability Advice and Health Effects Analysis on Sulfate (Draft). USA. 109.USEPA, 1990. National primary and secondary drinking water regulations; synthetic organic chemicals and inorganic chemicals. Fed. Reg. 55, 30370. 110.Van Tassel, P.R., Davis, H.T., McCormick, A.V., 1994. Adsorption Simulations of Small Molecules and Their Mixtures in a Zeolite Micropore. Langmuir 10, 1257–1267. https://doi.org/10.1021/la00016a046 111.Vera, M., Schippers, A., Sand, W., 2013. Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation—part A. Appl Microbiol Biotechnol 97, 7529–7541. https://doi.org/10.1007/s00253-013-4954-2 112.Verbinnen, B., Block, C., Hannes, D., Lievens, P., Vaclavikova, M., Stefusova, K., Gallios, G., Vandecasteele, C., 2012. Removal of Molybdate Anions from Water by Adsorption on Zeolite-Supported Magnetite. Water Environment Research 84, 753–760. https://doi.org/10.2175/106143012X13373550427318 113.Victoria-Salinas, R.E., Martínez-Miranda, V., Linares-Hernández, I., Vázquez-Mejía, G., Castañeda-Juárez, M., Almazán-Sánchez, P.T., 2019. Pre-treatment of soft drink wastewater with a calcium-modified zeolite to improve electrooxidation of organic matter. Journal of Environmental Science and Health, Part A 54, 617–627. https://doi.org/10.1080/10934529.2019.1579522 114.Vidlář, J., Schejbal, C., Fečko, P., 2002. Ecologically advantageous method of sulphate mine water cleaning. Transactions of the VŠB-Technical University of Ostrava 1–8. 115.Vujaković, A.D., Tomašević-Čanović, M.R., Daković, A.S., Dondur, V.T., 2000. The adsorption of sulphate, hydrogenchromate and dihydrogenphosphate anions on surfactant-modified clinoptilolite. Applied Clay Science 17, 265–277. https://doi.org/10.1016/S0169-1317(00)00019-3 116.Wanchun, T., Qiuyun, W., Yunbo, W., Zhengke, P., 2011. Adsorption of Nitrogen and Phosphorus on Natural Zeolite and Its Influencing Factors, in: 2011 International Conference on Computer Distributed Control and Intelligent Environmental Monitoring. pp. 1949–1952. https://doi.org/10.1109/CDCIEM.2011.222 117.Wang, C., Guo, H., Leng, S., Yu, J., Feng, K., Cao, L., Huang, J., 2021. Regulation of hydrophilicity/hydrophobicity of aluminosilicate zeolites: a review. Critical Reviews in Solid State and Materials Sciences 46, 330–348. https://doi.org/10.1080/10408436.2020.1819198 118.Wang, L.K., Vaccari, D.A., Li, Y., Shammas, N.K., 2005. Chemical Precipitation, in: Wang, L.K., Hung, Y.-T., Shammas, N.K. (Eds.), Physicochemical Treatment Processes, Handbook of Environmental Engineering. Humana Press, Totowa, NJ, pp. 141–197. https://doi.org/10.1385/1-59259-820-x:141 119.Wang, S., Peng, Y., 2010. Natural zeolites as effective adsorbents in water and wastewater treatment. Chemical Engineering Journal 156, 11–24. https://doi.org/10.1016/j.cej.2009.10.029 120.Wang, Z., Tan, K., Cai, J., Hou, S., Wang, Y., Jiang, P., Liang, M., 2019. Silica oxide encapsulated natural zeolite for high efficiency removal of low concentration heavy metals in water. Colloids and Surfaces A: Physicochemical and Engineering Aspects 561, 388–394. https://doi.org/10.1016/j.colsurfa.2018.10.065 121.WHO, 1996. Guidelines for drinking-water quality. Vol. 2, Health criteria and other supporting information. 122.Wibowo, E., Rokhmat, M., Sutisna, Khairurrijal, Abdullah, M., 2017. Reduction of seawater salinity by natural zeolite (Clinoptilolite): Adsorption isotherms, thermodynamics and kinetics. Desalination 409, 146–156. https://doi.org/10.1016/j.desal.2017.01.026 123.Young, R.A., Kundrot, R., Tillman, D.A., 2003. Pulp and Paper, in: Meyers, R.A. (Ed.), Encyclopedia of Physical Science and Technology (Third Edition). Academic Press, New York, pp. 249–265. https://doi.org/10.1016/B0-12-227410-5/00619-0 124.Zeng, Y., Woo, H., Lee, G., Park, J., 2010. Adsorption of Cr(VI) on hexadecylpyridinium bromide (HDPB) modified natural zeolites. Microporous and Mesoporous Materials 130, 83–91. https://doi.org/10.1016/j.micromeso.2009.10.016 125.Zhang, Z., Tan, Y., Zhong, M., 2011. Defluorination of wastewater by calcium chloride modified natural zeolite. Desalination 276, 246–252. https://doi.org/10.1016/j.desal.2011.03.057 126.Zholobenko, V., Garforth, A., 1997. TGA-DTA study on calcination of zeolitic catalysts l. Thermochimica Acta 6. 127.Zhou, L., Boyd, C.E., 2014. Total ammonia nitrogen removal from aqueous solutions by the natural zeolite, mordenite: A laboratory test and experimental study. Aquaculture 432, 252–257. https://doi.org/10.1016/j.aquaculture.2014.05.019 128.謝宇, 2013. 迴歸分析: Regression Analysis. 台灣五南圖書出版股份有限公司.
|