|
1.Sun, S., J.H. Schiller, and A.F. Gazdar, Lung cancer in never smokers--a different disease. Nat Rev Cancer, 2007. 7(10): p. 778-790. 2.Tseng, C.H., et al., The Relationship Between Air Pollution and Lung Cancer in Nonsmokers in Taiwan. J Thorac Oncol, 2019. 14(5): p. 784-792. 3.Kanwal, M., X.J. Ding, and Y. Cao, Familial risk for lung cancer. Oncol Lett, 2017. 13(2): p. 535-542. 4.Riely, G.J., et al., Frequency and distinctive spectrum of KRAS mutations in never smokers with lung adenocarcinoma. Clin Cancer Res, 2008. 14(18): p. 5731-5734. 5.Lin, L., et al., Mapping the molecular determinants of BRAF oncogene dependence in human lung cancer. Proc Natl Acad Sci U S A, 2014. 111(7): p. E748-757. 6.Bodner, S.M., et al., Expression of mutant p53 proteins in lung cancer correlates with the class of p53 gene mutation. Oncogene, 1992. 7(4): p. 743-749. 7.Pao, W. and J. Chmielecki, Rational, biologically based treatment of EGFR-mutant non-small-cell lung cancer. Nat Rev Cancer, 2010. 10(11): p. 760-774. 8.Li, K., et al., Determining EGFR-TKI sensitivity of G719X and other uncommon EGFR mutations in non-small cell lung cancer: Perplexity and solution (Review). Oncol Rep, 2017. 37(3): p. 1347-1358. 9.Lee, W.J., et al., Mortality from lung cancer in workers exposed to sulfur dioxide in the pulp and paper industry. Environ Health Perspect, 2002. 110(10): p. 991-995. 10.Raaschou-Nielsen, O., et al., Lung cancer incidence and long-term exposure to air pollution from traffic. Environ Health Perspect, 2011. 119(6): p. 860-865. 11.Pun, V.C., et al., Long-Term PM2.5 Exposure and Respiratory, Cancer, and Cardiovascular Mortality in Older US Adults. Am J Epidemiol, 2017. 186(8): p. 961-969. 12.Europe, W.H.O.J.C.W.R.O.f., Evolution of WHO air quality guidelines: past, present and future. 2017. 39. 13.Scaltriti, M. and J. Baselga, The epidermal growth factor receptor pathway: a model for targeted therapy. Clin Cancer Res, 2006. 12(18): p. 5268-5272. 14.Huang, L. and L. Fu, Mechanisms of resistance to EGFR tyrosine kinase inhibitors. Acta Pharm Sin B, 2015. 5(5): p. 390-401. 15.Yamaoka, T., et al., Receptor Tyrosine Kinase-Targeted Cancer Therapy. Int J Mol Sci, 2018. 19(11): p. 3491. 16.da Cunha Santos, G., F.A. Shepherd, and M.S. Tsao, EGFR mutations and lung cancer. Annu Rev Pathol, 2011. 6: p. 49-69. 17.Nan, X., et al., EGFR TKI as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer. Oncotarget, 2017. 8(43): p. 75712-75726. 18.Suda, K., et al., EGFR T790M mutation: a double role in lung cancer cell survival? J Thorac Oncol, 2009. 4(1): p. 1-4. 19.Arcila, M.E., et al., Rebiopsy of lung cancer patients with acquired resistance to EGFR inhibitors and enhanced detection of the T790M mutation using a locked nucleic acid-based assay. Clin Cancer Res, 2011. 17(5): p. 1169-1180. 20.Janne, P.A., et al., AZD9291 in EGFR inhibitor-resistant non-small-cell lung cancer. N Engl J Med, 2015. 372(18): p. 1689-1699. 21.Liao, B.C., C.C. Lin, and J.C. Yang, Second and third-generation epidermal growth factor receptor tyrosine kinase inhibitors in advanced nonsmall cell lung cancer. Curr Opin Oncol, 2015. 27(2): p. 94-101. 22.Thress, K.S., et al., Acquired EGFR C797S mutation mediates resistance to AZD9291 in non-small cell lung cancer harboring EGFR T790M. Nat Med, 2015. 21(6): p. 560-562. 23.Spurny, K.R., Chemical mixtures in atmospheric aerosols and their correlation to lung diseases and lung cancer occurence in the general population. Toxicology Letters, 1996. 88(1-3): p. 271-277. 24.Ma, J., et al., Airborne PM2.5/PM10-associated chlorinated polycyclic aromatic hydrocarbons and their parent compounds in a suburban area in Shanghai, China. Environ Sci Technol, 2013. 47(14): p. 7615-7623. 25.Zhang, H.H., et al., Physical and chemical characteristics of PM2.5 and its toxicity to human bronchial cells BEAS-2B in the winter and summer. J Zhejiang Univ Sci B, 2018. 19(4): p. 317-326. 26.Gualtieri, M., et al., Winter fine particulate matter from Milan induces morphological and functional alterations in human pulmonary epithelial cells (A549). Toxicol Lett, 2009. 188(1): p. 52-62. 27.Peng, F., et al., Potential role of PM2.5 in melanogenesis. Environ Int, 2019. 132: p. 105063. 28.Javed, W., et al., Concentrations of aliphatic and polycyclic aromatic hydrocarbons in ambient PM2.5 and PM10 particulates in Doha, Qatar. J Air Waste Manag Assoc, 2019. 69(2): p. 162-177. 29.Singh, A., et al., PAH exposure-associated lung cancer: an updated meta-analysis. Occup Med (Lond), 2018. 68(4): p. 255-261. 30.Shen, H., et al., Global lung cancer risk from PAH exposure highly depends on emission sources and individual susceptibility. Sci Rep, 2014. 4: p. 6561. 31.Tsay, J.J., et al., Aryl hydrocarbon receptor and lung cancer. Anticancer Res, 2013. 33(4): p. 1247-1256. 32.Nita, M. and A. Grzybowski, The Role of the Reactive Oxygen Species and Oxidative Stress in the Pathomechanism of the Age-Related Ocular Diseases and Other Pathologies of the Anterior and Posterior Eye Segments in Adults. Oxid Med Cell Longev, 2016. 2016: p. 3164734. 33.Piao, M.J., et al., Particulate matter 2.5 damages skin cells by inducing oxidative stress, subcellular organelle dysfunction, and apoptosis. Arch Toxicol, 2018. 92(6): p. 2077-2091. 34.Deng, X., et al., PM2.5-induced oxidative stress triggers autophagy in human lung epithelial A549 cells. Toxicol In Vitro, 2013. 27(6): p. 1762-1770. 35.Risom, L., P. Moller, and S. Loft, Oxidative stress-induced DNA damage by particulate air pollution. Mutat Res, 2005. 592(1-2): p. 119-137. 36.Danielsen, P.H., et al., Oxidative stress, DNA damage, and inflammation induced by ambient air and wood smoke particulate matter in human A549 and THP-1 cell lines. Chem Res Toxicol, 2011. 24(2): p. 168-184. 37.Li, R., R. Zhou, and J. Zhang, Function of PM2.5 in the pathogenesis of lung cancer and chronic airway inflammatory diseases. Oncol Lett, 2018. 15(5): p. 7506-7514. 38.Zhang, Y., et al., PM2.5 induces cell cycle arrest through regulating mTOR/P70S6K1 signaling pathway. Exp Ther Med, 2019. 17(6): p. 4371-4378. 39.Gualtieri, M., et al., Airborne urban particles (Milan winter-PM2.5) cause mitotic arrest and cell death: Effects on DNA, mitochondria, AhR binding and spindle organization. Mutat Res, 2011. 713(1-2): p. 18-31. 40.Longhin, E., et al., Cell cycle alterations induced by urban PM2.5 in bronchial epithelial cells: characterization of the process and possible mechanisms involved. Part Fibre Toxicol, 2013. 10: p. 63. 41.Xing, Y.F., et al., The impact of PM2.5 on the human respiratory system. J Thorac Dis, 2016. 8(1): p. E69-74. 42.Jeong, S., et al., PM2.5 Exposure in the Respiratory System Induces Distinct Inflammatory Signaling in the Lung and the Liver of Mice. J Immunol Res, 2019. 2019: p. 3486841. 43.Yao, L., et al., Ambient air pollution exposures and risk of drug-resistant tuberculosis. Environ Int, 2019. 124: p. 161-169. 44.Chen, Y.J., et al., Proteogenomics of Non-smoking Lung Cancer in East Asia Delineates Molecular Signatures of Pathogenesis and Progression. Cell, 2020. 182(1): p. 226-244 e17. 45.Hoffmann, M., et al., SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell, 2020. 181(2): p. 271-280 e8. 46.Domingo, J.L. and J. Rovira, Effects of air pollutants on the transmission and severity of respiratory viral infections. Environ Res, 2020. 187: p. 109650. 47.Bourdrel, T., et al., The impact of outdoor air pollution on COVID-19: a review of evidence from in vitro, animal, and human studies. Eur Respir Rev, 2021. 30(159): p. 200242. 48.Li, H.H., et al., Upregulation of ACE2 and TMPRSS2 by particulate matter and idiopathic pulmonary fibrosis: a potential role in severe COVID-19. Part Fibre Toxicol, 2021. 18(1): p. 11. 49.Ratz, L., et al., TMPRSS2:ERG gene fusion variants induce TGF-beta signaling and epithelial to mesenchymal transition in human prostate cancer cells. Oncotarget, 2017. 8(15): p. 25115-25130. 50.Zhou, F., et al., TMPRSS2-ERG activates NO-cGMP signaling in prostate cancer cells. Oncogene, 2019. 38(22): p. 4397-4411. 51.Cao, D., et al., Diesel exhaust particulate-induced activation of Stat3 requires activities of EGFR and Src in airway epithelial cells. Am J Physiol Lung Cell Mol Physiol, 2007. 292(2): p. L422-429. 52.Tal, T.L., et al., Epidermal growth factor receptor activation by diesel particles is mediated by tyrosine phosphatase inhibition. Toxicol Appl Pharmacol, 2008. 233(3): p. 382-388. 53.Huang, L., et al., Positive feedback of the amphiregulin-EGFR-ERK pathway mediates PM2.5 from wood smoke-induced MUC5AC expression in epithelial cells. Sci Rep, 2017. 7(1): p. 11084. 54.Jeong, S.C., et al., Epidermal growth factor receptor (EGFR)-MAPK-nuclear factor(NF)-kappaB-IL8: A possible mechanism of particulate matter(PM) 2.5-induced lung toxicity. Environ Toxicol, 2017. 32(5): p. 1628-1636. 55.Samet, J.M., et al., Mechanisms of Zn(2+)-induced signal initiation through the epidermal growth factor receptor. Toxicol Appl Pharmacol, 2003. 191(1): p. 86-93. 56.Ho, K.F., et al., Effects of polycyclic aromatic compounds in fine particulate matter generated from household coal combustion on response to EGFR mutations in vitro. Environ Pollut, 2016. 218: p. 1262-1269. 57.Wei, H., et al., The mechanisms for lung cancer risk of PM2.5 : Induction of epithelial-mesenchymal transition and cancer stem cell properties in human non-small cell lung cancer cells. Environ Toxicol, 2017. 32(11): p. 2341-2351. 58.Wang, Y., et al., PM2.5 induces EMT and promotes CSC properties by activating Notch pathway in vivo and vitro. Ecotoxicol Environ Saf, 2019. 178: p. 159-167. 59.Sasaki, H., et al., APOBEC3B gene overexpression in non-small-cell lung cancer. Biomed Rep, 2014. 2(3): p. 392-395. 60.Burns, M.B., et al., APOBEC3B is an enzymatic source of mutation in breast cancer. Nature, 2013. 494(7437): p. 366-370. 61.Leonard, B., et al., APOBEC3B upregulation and genomic mutation patterns in serous ovarian carcinoma. Cancer Res, 2013. 73(24): p. 7222-7231. 62.Burns, M.B., N.A. Temiz, and R.S. Harris, Evidence for APOBEC3B mutagenesis in multiple human cancers. Nat Genet, 2013. 45(9): p. 977-983. 63.Yan, S., et al., Increased APOBEC3B Predicts Worse Outcomes in Lung Cancer: A Comprehensive Retrospective Study. J Cancer, 2016. 7(6): p. 618-625. 64.Eliopoulos, A.G., S. Havaki, and V.G. Gorgoulis, DNA Damage Response and Autophagy: A Meaningful Partnership. Front Genet, 2016. 7: p. 204. 65.Roberts, S.A., et al., An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers. Nat Genet, 2013. 45(9): p. 970-976. 66.Gomes, L.R., C.F.M. Menck, and G.S. Leandro, Autophagy Roles in the Modulation of DNA Repair Pathways. Int J Mol Sci, 2017. 18(11): p. 2351. 67.Martin, C.E. and K. List, Cell surface-anchored serine proteases in cancer progression and metastasis. Cancer Metastasis Rev, 2019. 38(3): p. 357-387. 68.Murray, A.S., et al., The cell-surface anchored serine protease TMPRSS13 promotes breast cancer progression and resistance to chemotherapy. Oncogene, 2020. 39(41): p. 6421-6436. 69.Reig, O., et al., TMPRSS2-ERG in Blood and Docetaxel Resistance in Metastatic Castration-resistant Prostate Cancer. Eur Urol, 2016. 70(5): p. 709-713. 70.Zhong, J., et al., Potential Resistance Mechanisms Revealed by Targeted Sequencing from Lung Adenocarcinoma Patients with Primary Resistance to Epidermal Growth Factor Receptor (EGFR) Tyrosine Kinase Inhibitors (TKIs). J Thorac Oncol, 2017. 12(12): p. 1766-1778. 71.Watzky, M., et al., Assessing the consequences of environmental exposures on the expression of the human receptor and proteases involved in SARS-CoV-2 cell-entry. Environ Res, 2021. 195: p. 110317. 72.Tsuchiya, Y., et al., Expression of aryl hydrocarbon receptor repressor in normal human tissues and inducibility by polycyclic aromatic hydrocarbons in human tumor-derived cell lines. Toxicol Sci, 2003. 72(2): p. 253-259. 73.Ye, M., et al., Activation of the Aryl Hydrocarbon Receptor Leads to Resistance to EGFR TKIs in Non-Small Cell Lung Cancer by Activating Src-mediated Bypass Signaling. Clin Cancer Res, 2018. 24(5): p. 1227-1239. 74.Yang, M., et al., Differentially expressed and survival-related proteins of lung adenocarcinoma with bone metastasis. Cancer Med, 2018. 7(4): p. 1081-1092. 75.Zhang, Z.H., et al., Diagnostic and prognostic value of the BEX family in lung adenocarcinoma. Oncol Lett, 2019. 18(5): p. 5523-5533. 76.Ye, Y., et al., Expression of Carboxypeptidase X M14 Family Member 2 Accelerates the Progression of Hepatocellular Carcinoma via Regulation of the gp130/JAK2/Stat1 Pathway. Cancer Manag Res, 2020. 12: p. 2353-2364. 77.Niu, G., et al., Overexpression of CPXM2 predicts an unfavorable prognosis and promotes the proliferation and migration of gastric cancer. Oncol Rep, 2019. 42(4): p. 1283-1294. 78.Zhao, X., et al., Overexpression of carboxypeptidase X M14 family member 2 predicts an unfavorable prognosis and promotes proliferation and migration of osteosarcoma. Diagn Pathol, 2019. 14(1): p. 118. 79.Kwon, Y., et al., Targeting Autophagy for Overcoming Resistance to Anti-EGFR Treatments. Cancers (Basel), 2019. 11(9): p. 1374. 80.Caswell, D., et al., APOBEC3B and TKI resistance in EGFR mutant lung cancer. Cancer Research, 2021. 81(13).
|