[1]M. Law, H. Kind, B. Messer, F. Kim, and P. Yang, "Photochemical sensing of NO2 with SnO2 nanoribbon nanosensors at room temperature," Angew. Chem. Int. Ed., vol. 41, pp. 2405-2408, 2002 .
[2]Borysiewicz, M. A. (2019). ZnO as a Functional Material, a Review. Crystals, 9(10), Article 10.
[3]Vayssieres, L., Keis, K., Lindquist, S. E., & Hagfeldt, A. (2001). Three-Dimensional Array of Highly Oriented Crystalline ZnO Microtubes. Chemical Materials, 13, 4395-4398.
[4]Greene, L. E., Law, M., Goldberger, J., Kim, F., Johnson, J. C., Zhang, Y., Saykally, R. J., & Yang, P. D. (2003). Low-Temperature Wafer-Scale Production of ZnO Nanowire Arrays. Angewandte Chemie International Edition, 42, 3031-3034.
[5]Law, M., Kind, H., Messer, B., Kim, F., & Yang, P. (2002). Photochemical Sensing of NO2 with SnO2 Nanoribbon Nanosensors at Room Temperature. Angewandte Chemie International Edition, 41, 2405-2408.
[6]Li, Q., Kumar, V., Li, Y., Zhang, H., Marks, T. J., & Chang, R. P. H. (2005). Fabrication of ZnO Nanorods and Nanotubes in Aqueous Solutions. Chemical Materials, 17, 1001-1006.
[7]Govender, K., Boyle, D. S., Kenway, P. B., & O’Brien, P. (2004). Understanding the Factors that Govern the Deposition and Morphology of Thin Films of ZnO from Aqueous Solution. Journal of Materials Chemistry, 14, 2575-2591.
[8]Lin, B., Fu, Z., & Jia, Y. (2001). Green luminescent center in undoped zinc oxide films deposited on silicon substrates. Applied Physics Letters, 79, 943-945.
[9]Djurišić, A. B., & Leung, Y. H. (2006). Optical properties of ZnO nanostructures. Small, 2, 944-961.
[10]Vanheusden, K., Warren, W. L., Seager, C. H., Tallant, D. R., Voigt, J. A., & Gnade, B. E. (1996). Mechanisms behind green photoluminescence in ZnO phosphor powders. Journal of Applied Physics, 79, 7983-7990.
[11]McCluskey, M. D. (2020). Point defects in Ga2O3. Journal of Applied Physics, 127, 101101-1~101101-13.
[12]Ogugua, S. N., Swart, H. C., Ntwaeaborwa, O. M. (2020). Effects of deposition environment and temperature on photoluminescence, particle morphology, and crystal structure of pulsed laser deposited Ga2O3 thin films. Journal of Vacuum Science & Technology A, 38, 043407-1~043407-12.
[13]张芮馨, 孙辉, 程佳, 刘子童, 陈建金, 沈龙海. (2021). 溅射气压对氧化镓薄膜光学特性的影响. 半导体光电, 6, 875-878.
[14]Li, P., Shi, H., Chen, K., Guo, D., Cui, W., Zhi, Y., Wang, S., Wu, Z., Chen, Z., Tang, W. (2017). Construction of GaN/Ga2O3 p-n junction for an extremely high responsivity self-powered UV photodetector. Journal of Materials Chemistry C, 5, 10562-10570.
[15]Zhai, H., Wu, Z., Fang, Z. (2022). Recent progress of Ga2O3-based gas sensors. Ceramics International, 48, 24213-24233.
[16]16.Shinoki, T., & Itoh, A. (1975). Mechanism of rf reactive sputtering. Journal of Applied Physics, 6, 3381-3384.
[17]田民波. (2007). 薄膜技術與薄膜材. 五南圖書出版有限公司.
[18]張秉書,”以非平衡磁控濺鍍法製備TiN硬質薄膜之研究”,臺灣師範大學工業教育學系研究所碩士論文, 2003。[19]Vayssieres, L. (2003). Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions. Advanced Materials, 15, 464-466.
[20]Greene, L. E., Law, M., Goldberger, J., Kim, F., Johnson, J. C., Zhang, Y., Saykally, R. J., & Yang, P. D. (2003). Low-Temperature Wafer-Scale Production of ZnO Nanowire Arrays. Angewandte Chemie International Edition, 42, 3031-3034.
[21]Li, Q., Kumar, V., Li, Y., Zhang, H., Marks, T. J., & Chang, R. P. H. (2005). Fabrication of ZnO Nanorods and Nanotubes in Aqueous Solutions. Chemistry of Materials, 17, 1001-1006.
[22]Djurišić, A. B., & Leung, Y. H. (2006). Optical properties of ZnO nanostructures. Small, 2, 944-961.
[23]Li, Q., Kumar, V., Li, Y., Zhang, H., Marks, T. J., & Chang, R. P. H. (2005). Fabrication of ZnO Nanorods and Nanotubes in Aqueous Solutions. Chemistry of Materials, 17, 1001-1006.
[24]Greene, L. E., Law, M., Goldberger, J., Kim, F., Johnson, J. C., Zhang, Y., Saykally, R. J., & Yang, P. D. (2003). Low-Temperature Wafer-Scale Production of ZnO Nanowire Arrays. Angewandte Chemie International Edition, 42, 3031-3034.
[25]Vayssieres, L. (2003). Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions. Advanced Materials, 15, 464-466.
[26]Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, “Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films”, Appl. Phys. Lett, vol. 72, pp. 3270-3272, 1998.
[27]Totten, G. E., Howes, M. A. H., & Inoue, T. (2002). Handbook of Residual Stress and Deformation of Steel. ASM International.
[28]Callister, W. D. Jr., & Rethwisch, D. G. (2010). Fundamentals of Materials Science and Engineering: An Integrated Approach. John Wiley & Sons.
[29]Cahn, R. W., Haasen, P., & Kramer, E. J. (1996). Materials Science and Technology: A Comprehensive Treatment. VCH Publishers.
[30]Katzir, A. (1990). Introduction to the theory of piezoelectricity. Piezoelectricity, 1-42.
[31]Safari, A., & Akdogan, E. K. (2008). Piezoelectric and Acoustic Materials for Transducer Applications. Springer Science & Business Media.
[32]Jaffe, B., Cook, W. R., & Jaffe, H. (1971). Piezoelectric Ceramics. Academic Press.
[33]J. Song, J. Zhou, Z. L. Wang, “Piezoelectric and Semiconducting Coupled Power Generating Process of a Single ZnO Belt/Wire. A Technology for Harvesting Electricity from the Environment”, Nano Letters, vol. 6, pp. 1656-1662, 2006
[34]Pearton, S. J., Norton, D. P., Ip, K., Heo, Y. W., & Steiner, T. (2005). ZnO-based UV photodetectors. Journal of Materials Science: Materials in Electronics, 16(7), 655-666.
[35]Pearton, S. J., Ren, F., Tadjer, M., & Kim, J. (2018). Gallium Oxide (Ga₂O₃) as an Emerging Material for UV Photodetectors: A Review. Applied Physics Reviews, 5(1), 011301.
[36]L. Zhang, S. Bai, C. Su, Y. Zheng , Y. Qin, C. Xu, Z. L. Wang, "A High-Reliability Kevlar Fiber-ZnO Nanowires Hybrid Nanogenerator and its Application on Self-Powered UV Detection", Advanced Functional Materials, vol. 25, p.p. 5794–5798, 2015