1.McKee, D. W. (1986). Borate treatment of carbon fibers and carbon/carbon composites for improved oxidation resistance. Carbon, 24(6), 737-741.
2.Kilin, V. S., Cherednik, E. M., Lebedev, Y. N., Dergunova, V. S., & Ostrovskii, V. S. (1977). Oxidation of carbon fibers coated with pyrolytic silicon carbide. Soviet Powder Metallurgy and Metal Ceramics, 16, 616-619.
3.Masato, K. (1978). Silicon carbide coatings on carbon fibres. Japan Institute of Metals, Journal, 42(2), 131-136.
4.Faile, S. P., & Stover, E. R. (1982). Naval Air Development Center Report. NADC-80088-60, General Electric Company.
5.Chown, J., Deacon, R. F., Singer, N., & White, A. E. S. (1962). Special Ceramics 1962. Ed. by P. Popper, Academic Press, New York.
6.Cochran, A. A., & Stephenson, J. B. (1970). Boron and boron carbide coatings by vapor deposition. Metallurgical Transactions, 1, 2875-2880.
7.Hannache, H., Quenisset, J. M., Naslain, R., & Heraud, L. (1984). Composite materials made from a porous 2D-carbon-carbon preform densified with boron nitride by chemical vapour infiltration. Journal of materials science, 19, 202-212.
8.Konokotin, V. V., Glants, B. A., Kravetskij, G. A., Kostilov, V. S., & Guseva, N.P. (1976). Estimation of The Effectiveness of Oxide Coating On Graphite, Inorg. Master(USSR), 12, 1389.
9.陳琨湧(2020)。溴化抑制碳-碳複合材料的氧化。國立虎尾科技大學機械設計工程系碩士論文,雲林縣。10.Ho, C. T., & Liu, W .L. (1994). Proceeding of Master. Conference, 623.
11.Ho, C. T. (1994). An internal synthesis method for mullite-chromium carbide composite in a vacuum system. Journal of materials science, 29, 3309-3315.
12.Fitzer, E. (1985). Carbon Fibers and Their Composites, Springer Berlin, Heidelberg.
13.Sasa, T., Takahashi, Y., & Mukaibo, T. (1971). Crystal structure of graphite bromine lamellar compounds. Carbon, 9(4), 407-416.
14.Chiou, J. M., Ho, C. T., & Chung, D. D. L. (1989). Effect of bromination on the oxidation resistance of pitch-based carbon fibers. Carbon, 27(2), 227-231.
15.Ho, C. T., & Chung, D. D. L. (1990). Bromination of graphitic pitch-based carbon fibers. Carbon, 28(6), 831-837.
16.Hippo, E. J., Murdie, N., & Kowbel, W. (1989). The effect of acid treatments on subsequent reactivity of carbon-carbon composites. Carbon, 27(3), 331-336.
17.Fitzer, E., & Edie, D. (1989). Johnson, DJ Carbon fibers-present state and future expectation; Pitch and mesophase fibers; Structure and properties of carbon fibers. Carbon Fibers Filaments and Composites, 1st ed.; Figueiredo, JL, Bernardo, CA, Baker, RTK, Huttinger, KJ, Eds.
18.Roberts, T. (2006). The carbon fibre industry: Global strategic market evaluation 2006-2010. Watford, UK: Materials Technology Publications.
19.Red, C. (2006). Aerospace will continue to lead advanced composites market in 2006. Composites Manufacturing(VA), 22(1), 24-26.
20.National Research Council. (1992). High performance synthetic fibers for composites (Vol. 458). National Academies Press.
21.Chung, D. (1994). Carbon fiber composites. Elsevier.
22.Donnet, J. B., & Bansal, R. C. (1998). Carbon fibers. Crc Press.
23.Friedlander, H. N., Peebles Jr, L. H., Brandrup, J., & Kirby, J. R. (1968). On the chromophore of polyacrylonitrile. VI. Mechanism of color formation in polyacrylonitrile. Macromolecules, 1(1), 79-86.
24.Morley, J. G. (1987). High-performance fibre composites. Academic Pr.
25.Wicks, B. J. (1975). Microstructural disorder and the mechanical properties of carbon fibres. Journal of Nuclear Materials, 56(3), 287-296.
26.Watt, W. (1967). The effect of length changes during the oxidation of polyacrylonitrile fibers on the young's modulus of carbon fibers. Applied Polymer Symposia, 9, 215-227.
27.Fourdeux, A., Perret, R., & Ruland, W. (1971). General structural features of carbon fibers. Proceedings of the First International Conference on Carbon Fibers, 57-62.
28.Perret, R., & Ruland, W. (1970). The microstructure of PAN-base carbon fibres. Journal of Applied Crystallography, 3(6), 525-532.
29.Edie, D. D. (1998). The effect of processing on the structure and properties of carbon fibers. Carbon, 36(4), 345-362.
30.Guigon, M., & Oberlin, A. (1986). Preliminary studies of mesophase-pitch-based carbon fibres: structure and microtexture. Composites science and technology, 25(3), 231-241.
31.Konkin, A. (1985). Properties of carbon fibres and fields of their application. Elsevier Science Publishers B. V., Handbook of Composites, 1, 241-273.
32.Lafdi, K., & Wright, M. A. (1998). Carbon fibers. Handbook of Composites, 169-201.
33.Reynolds, W. N., & Sharp, J. V. (1974). Crystal shear limit to carbon fibre strength. Carbon, 12(2), 103-110.
34.Endo, M. (1988). Structure of mesophase pitch-based carbon fibres. Journal of materials Science, 23, 598-605.
35.Timot, S. W.,1961, U.S. Patent No. 3,011,981. Washington, DC: U.S. Patent and Trademark Office.
36.Cranch, G. E. (1962). Unique properties of flexible carbon fibers. Proceedings of 5th Conference on Carbon, 11, 589.
37.Patent announcement Japan. (1959). Shouwa-37-4405.
38.Morgan, P. (2005). Carbon fibers and their composites. CRC press.
39.Masson, J. C. (1995). Product variants. Acrylic fiber technology and applications.
40.Takahashi, M., 1961, Sen-I Gakkaishi, 17, pp.557-562.
41.Terada, K. (1972). Changes in the fine structure of wet-spun acrylic fibers during stretching. Sen'i Gakkaishi, 28(12), 504-515.
42.Terada, K. (1973). Changes in the fine structure of wet-spun acrylic fibers during drying. Sen'i Gakkaishi, 29(3), 120-127.
43.Tanaka, F., & Okabe, T. (2017). Historical review of processing, microstructures, and mechanical properties of PAN-based carbon fibers. Comprehensive composite materials II, 66-85.
44.Dhami, T. L., Bahl, O. P., & Awasthy, B. R. (1995). Oxidation-resistant carbon-carbon composites up to 1700° C. Carbon, 33(4), 479-490.
45.Shemet, V. Z., Pomytkin, A. P., & Neshpor, V. S. (1993). High-temperature oxidation behaviour of carbon materials in air. Carbon, 31(1), 1-6.
46.Farhan, S., Wang, R., Li, K., & Wang, C. (2015). Sublimation and oxidation zone ablation behavior of carbon/carbon composites. Ceramics International, 41(10), 13751-13758.
47.Jacobson, N. S., & Curry, D. M. (2006). Oxidation microstructure studies of reinforced carbon/carbon. Carbon, 44(7), 1142-1150.
48.Kumar, S., Kushwaha, J., Mondal, S., Kumar, A., Jain, R. K., & Devi, G. R. (2013). Fabrication and ablation testing of 4D C/C composite at 10 MW/m2 heat flux under a plasma arc heater. Materials Science and Engineering: A, 566, 102-111.
49.Farhan, S., Wang, R., & Li, K. (2015). Directional thermophysical, ablative and compressive behavior of 3D carbon/carbon composites. Ceramics International, 41(8), 9763-9769.
50.Yin, J., Xiong, X., Zhang, H., & Huang, B. (2006). Microstructure and ablation performances of dual-matrix carbon/carbon composites. Carbon, 44(9), 1690-1694.
51.Corral, E. L., & Loehman, R. E. (2008). Ultra‐high‐temperature ceramic coatings for oxidation protection of carbon–carbon composites. Journal of the American Ceramic Society, 91(5), 1495-1502.
52.Mouritz, A. P., Feih, S., Kandare, E., Mathys, Z., Gibson, A. G., Des Jardin, P. E., ... & Lattimer, B. Y. (2009). Review of fire structural modelling of polymer composites. Composites Part A: Applied Science and Manufacturing, 40(12), 1800-1814.
53.Wesiwood, M. E., & Webster, J. D. (1996). Review oxidation protection for carbon fiber composites. Journal of Materials Science, 31(1), 389-1.
54.Jin, X., Fan, X., Lu, C., & Wang, T. (2018). Advances in oxidation and ablation resistance of high and ultra-high temperature ceramics modified or coated carbon/carbon composites. Journal of the European ceramic Society, 38(1), 1-28.
55.Tang, S., & Hu, C. (2017). Design, preparation and properties of carbon fiber reinforced ultra-high temperature ceramic composites for aerospace applications: a review. Journal of Materials Science & Technology, 33(2), 117-130.
56.Fahrenholtz, W. G., Hilmas, G. E., Talmy, I. G., & Zaykoski, J. A. (2007). Refractory diborides of zirconium and hafnium. Journal of the American Ceramic Society, 90(5), 1347-1364.
57.Chamberlain, A. L., Fahrenholtz, W. G., Hilmas, G. E., & Ellerby, D. T. (2004). High‐strength zirconium diboride‐based ceramics. Journal of the American Ceramic Society, 87(6), 1170-1172.
58.Monteverde, F., Bellosi, A., & Guicciardi, S. (2002). Processing and properties of zirconium diboride-based composites. Journal of the European Ceramic Society, 22(3), 279-288.
59.Ran, S., Huang, S. G., Van der Biest, O., & Vleugels, J. (2012). High-strength ZrB2-based ceramics prepared by reactive pulsed electric current sintering of ZrB2–ZrH2 powders. Journal of the European Ceramic Society, 32(10), 2537-2543.
60.Fu, Q., (2010) Study On the SiC Whisker-toughened Silisides and SiC/glass Oxidation Protective Coating. Journal of the Chinese Ceramic Society, 38(5), 991-996.
61.Vahlas, C., Caussat, B., Serp, P., & Angelopoulos, G. N. (2006). Principles and applications of CVD powder technology. Materials Science and Engineering: R: Reports, 53(1-2), 1-72.
62.Cao, X. Q., Vassen, R., & Stöver, D. (2004). Ceramic materials for thermal barrier coatings. Journal of the European Ceramic Society, 24(1), 1-10.
63.Bartuli, C., Valente, T., & Tului, M. (2002). Plasma spray deposition and high temperature characterization of ZrB2–SiC protective coatings. Surface and Coatings Technology, 155(2-3), 260-273.
64.Tului, M., Marino, G., & Valente, T. (2006). Plasma spray deposition of ultra high temperature ceramics. Surface and Coatings Technology, 201(5), 2103-2108.
65.Venugopal, S., Paul, A., Vaidhyanathan, B., Binner, J. G. P., Heaton, A., & Brown, P. M. (2011). Nano-crystalline ultra high temperature HfB2 and HfC powders and coatings using a sol-gel approach. Ceramic Engineering and Science Proceedings, 32(3), 151-159.
66.Huang, Q. Z. (2010). Fabrication, Structure and Application of High Performance Carbon/Carbon Composites.
67.Jian-Feng, H., Xie-Rong, Z., He-Jun, L., Xin-Bo, X., & Ye-Wei, F. (2004). Influence of the preparation temperature on the phase, microstructure and anti-oxidation property of a SiC coating for C/C composites. Carbon, 42(8-9), 1517-1521.
68.Friedrich, C., Gadow, R., & Speicher, M. (2002). Protective multilayer coatings for carbon–carbon composites. Surface and Coatings Technology, 151, 405-411.
69.Zhang, Y. L., Li, H. J., Fu, Q. G., Li, K. Z., Wei, J., & Wang, P. Y. (2006). AC/SiC gradient oxidation protective coating for carbon/carbon composites. Surface and Coatings Technology, 201(6), 3491-3495.
70.Zhang, Y., Li, H., Qiang, X., & Li, K. (2010). Oxidation protective C/SiC/Si-SiC multilayer coating for carbon/carbon composites applying at 1873 K. Journal of Materials Science & Technology, 26(12), 1139-1142.
71.Dangshe, H., Kezhi, L., Hejun, L., Qiangang, F., Jian, W., & Yonggang, H. (2008). Study on the SiC-TaSi2/MoSi2 Multilayer Oxidation Protective Coating for Carbon/Carbon composites. Acta Metall Sin, 44(3), 331-335.
72.Kezhi, F. Q. L. H. L., & Xiaohong, S. H. I. (2009). Preparation and Anti-oxidation Property of SiC/SiC–MoSi2 Coating on C/C Composite. Acta Metall Sin, 45(4), 503-506.
73.Wang, Y. J., Li, H. J., Fu, Q. G., Wu, H., Yao, D. J., & Wei, B. B. (2011). Ablative property of HfC-based multilayer coating for C/C composites under oxy-acetylene torch. Applied surface science, 257(10), 4760-4763.
74.Wang, Y., Li, H., Fu, Q., Wu, H., Yao, D., & Li, H. (2012). SiC/HfC/SiC ablation resistant coating for carbon/carbon composites. Surface and Coatings Technology, 206(19-20), 3883-3887.
75.Wang, Y. J., Li, H. J., Fu, Q. G., Wu, H., Liu, L., & Sun, C. (2013). Ablation behaviour of a TaC coating on SiC coated C/C composites at different temperatures. Ceramics International, 39(1), 359-365.
76.Yao, D. J., Li, H. J., Wu, H., Fu, Q. G., & Qiang, X. F. (2016). Ablation resistance of ZrC/SiC gradient coating for SiC-coated carbon/carbon composites prepared by supersonic plasma spraying. Journal of the European Ceramic Society, 36(15), 3739-3746.
77.Huang, J. F., Zeng, X. R., Li, H. J., Xiong, X. B., & Sun, G. L. (2005). ZrO2–SiO2 gradient multilayer oxidation protective coating for SiC coated carbon/carbon composites. Surface and Coatings Technology, 190(2-3), 255-259.
78.Wang, H. H., Li, H. J., Shi, X. H., Liu, X. S., Kong, J. A., & Zhou, H. (2020). Repair of SiC coating on carbon/carbon composites by laser cladding technique. Ceramics International, 46(11), 19537-19544.
79.Koh, Y. H., Kwon, O. S., Hong, S. H., Kim, H. E., & Lee, S. K. (2001). Improvement in oxidation resistance of carbon by formation of a protective SiO2 layer on the surface. Journal of the European Ceramic Society, 21(13), 2407-2412.
80.Zhu, X., Zhang, Y., Su, Y., Fu, Y., & Zhang, P. (2021). SiC-Si coating with micro-pores to protect carbon/carbon composites against oxidation. Journal of the European Ceramic Society, 41(1), 114-120.
81.Zhang, B., Yi, M., Ning, Y., Xie, A., Zhou, Z., & Feng, Z. (2022). A thick SiC-Si coating prepared by one-step pack cementation for long-term protection of carbon/carbon composites against oxidation at 1773 K. Corrosion Science, 200, 110223.
82.Feng, G., Li, H., Yao, X., Sun, J., & Jia, Y. (2022). An optimized strategy toward multilayer ablation coating for SiC-coated carbon/carbon composites based on experiment and simulation. Journal of the European Ceramic Society, 42(9), 3802-3811.
83.張志嘉(2015)。以碳纖維增強錫-鉛合金之複合材料的磨耗。國立虎尾科技大學機械設計工程系碩士論文,雲林縣。84.Chu, P. Y., Clark, D. E. (1988). Coating porous substrates by the sol-gel method. Adv. Ceram. Mater., 3(3), 249.
85.Katzman, H. A. (1987). Fibre coatings for the fabrication of graphite-reinforced magnesium composites. Journal of Materials Science, 22, 144-148.
86.Deslandes, Y., & Sabir, F. N. (1990). Inhibition of oxidation of carbon fibres by sol-gel coatings. Journal of materials science letters, 9, 200-202.
87.https://www.laboratuar.com/zh-TW/testler/astm-testleri/astm-d3039-polimer-ve-kompozit-cekme-testleri/
88.McKee, D. W., & Spiro, C. L. (1985). The effects of chlorine pretreatment on the reactivity of graphite in air. Carbon, 23(4), 437-444.