[1]Meng, H., Ludema, K., 1995, “Wear Models and Predictive Equations: Their form and Content”, Wear, Vol.181, pp. 443-457.
[2]Petre I., 2016, “Determining the Functional and Material Properties Needed for Abrasive Wear Prediction”, Materials Science and Engineering, Vol.147, 012018.
[3]Zambrano, O.A., Muñoz, E.C., Rodríguez, S.A., Coronado, J.J., 2020, “Running-In Period for the Abrasive Wear of Austenitic Steels”, Wear, Vol. 452-453, 203298.
[4]Torrance, A.A., 2005, “Modelling Abrasive Wear”, Wear, Vol. 258(1-4), pp. 281-293
[5]Andersson, J., Larsson, R., Almqvist, A., Grahnb, M., Minami, I., 2012, “Semi-Deterministic Chemo-Mechanical Model of Boundary Lubrication”, Faraday Discuss, Vol. 156, pp. 343-360.
[6]Bosman R., Schipper D.J., 2011, “Running-In of Systems Protected by Additive-Rich Oils”, Tribology Letters, Vol. 41, pp. 263-282.
[7]Ghanbarzadeh, A., Wilson, M., Morina, A., Dowson, D., Neville, A., 2016, “Development of a New Mechano-Chemical Model in Boundary Lubrication”, Tribology International, Vol. 93, pp. 573-582.
[8]Torben, T.J., Fourati, M.A., Pape, F., Poll, G., 2020, “Energy-Based Modelling of Adhesive Wear in the Mixed Lubrication Regime”, Lubricants, Vol. 8, pp. 1-16.
[9]Czichos, H., Woydt, M., 2017, “Introduction to Tribology and Tribological Parameters”, Friction, Lubrication, and Wear Technology, ASM International, pp. 3-15.
[10]Madanhire, I., Mbohwa, C, 2016, “Mitigating Environmental Impact of Petroleum Lubricants”, ISBN:978-3-319-31357-3.
[11]Blau, P.J., 2001, “The Significance and Use of the Friction Coefficient”, Wear, Vol.34, pp. 585-591.
[12]Kenneth, C.L, 1984, “A Review of Scuffing and Running-in of Lubricated Surfaces, with Asperities and Oxides in Perspective”, Wear, Vol. 100, pp. 315-331.
[13]Hsu, S., Ying, C., Zhao, F., 2014, “The Nature of Friction: A Critical Assessmen”, Friction, Vol. 2, pp. 1-26.
[14]Kennedy, F.E., Lu, Y., Baker, I., 2015, “Contact Temperatures and Their Influence on Wear During Pin-on-Disk Tribotesting”, Tribology International, Vol. 82, Part B, pp 534-542.
[15]Feng S, Fan B, Mao J, Xie Y, 2015, “Prediction on Wear of A Spur Gearbox by On-Line Wear Debris Concentration Monitoring”, Wear, Vol. 336-337, pp. 1-8.
[16]Koulocheris, D., Stathis, A., Costopoulos, T.H., Tsantiotis, D., 2014, “Experimental Study of the Impact of Grease Particle Contaminants on Wear and Fatigue Life of Ball Bearings”, Engineering Failure Analysis, Vol. 39, pp. 164-180.
[17]Upadhyay, R.K., 2013, “Microscopic Technique to Determine Various Wear Modes of Used Engine Oil”, Engineering Failure Analysis, Vol. 1, No.3, pp. 111-114.
[18]Bowman, W.F., Stachowiak, G.W., 1996, “A Review of Scuffing Models”, Tribology Letters., Vol. 2, No.2, pp. 113-131.
[19]新豐貿易股份有限公司, “潤滑─SKF潤滑油脂、VOGEL集中潤滑系統、芬蘭SAFEMATIC造紙業潤滑系統” , https://reurl.cc/9Vkrav。
[20]Mobile 01, “輕型與重型機車綜合”, https://reurl.cc/EG0nxm。
[21]助和成精密工業有限公司, “公司簡介”, https://reurl.cc/gZAW9N。
[22]Bewise Inc., “鑽石微粉-奈米鑽石(納米金剛石)”, https://reurl.cc/Ge6mMy。
[23]Takeuchi, Y., Sakamoto, M., Yoshida, T., 1986, “The Recognition of Bearings by Means of A CCD Line Sensor and the Automation of Scraping Works”, Journal of the Japan Society for Precision Engineering, Vol. 52, pp. 2087-2092.
[24]Tsutsumi, H., Kyusojin, A., Nakamura, T., 1996, “Development of An Automatic Scraping Machine with Recognition for Bearing of Scraped Surfaces (1 st Report)-Recognition of Black Hearing by CCD Camera”, Journal-Japan Society for Precision Engineering, Vol. 62, pp. 219-223.
[25]Tsutsumi, H., Yamada, R., Kyusojin, A., Nakamura, T., 2005, “Development of An Automatic Scraping Machine with Recognition for Bearing of Scraped Surfaces (3rd Report)-Construction of Automatic Scraping Machine”, The Japan Society of Mechanical Engineers, Vol. 71, pp. 358-362.
[26]Tsutsumi, H., Yamada, R., Kyusojin, A., Nakamura, T., 2007, “Development of An Automatic Scraping Machine with Recognition for Bearing of Scraped Surfaces-construction of Automatic Scraping Machine”, In Towards Synthesis of Micro-/Nano-Systems, Springer London., pp. 355-356.
[27]周睿程,2009,“一種對於鏟花工件表面輪廓的光學量測法”,國立臺灣大學工學院機械工程學系碩士論文。[28]江明冀,2010,“鏟花工件表面鏟花技術開發”,國立虎尾科技大學機械與機電工程研究所碩士論文。[29]黃峻彥,2013,“搭配CMOS相機與光罩之機器視覺系統於鏟花加工面檢測之研究”,國立勤益科技大學機械工程系碩士班碩士論文。[30]莊朝盛,2013,“機器視覺於鏟花成斑檢測之應用”,國立勤益科技大學機械工程系在職碩士班碩士論文,國立勤益科技大學機械工程系。[31]Helouvry, A.B., Dupont, P., Wit, C.C., 1994, “A Survey of Models, Analysis Tools and Compensation Methods for the Control of Machines with Friction”, Automatica, Vol. 30, No.7, pp. 1083-1138.
[32]Gerlach, R., Scraping, 2008, “Why and How, Southern”, Califor Home Shop Machinists.
[33]Sekimizu, T., Harada, T., Tsutumi, H., Fukud, K., Kyosojin, A., 2008, “Tribology Characteristics Estimation of Slide-Way Surface Finished Property”, The Japan Society of Mechanical Engineers, Vol. 14, pp. 69-70.
[34]Wang, X., Liu, W., Zhou, F., Zhu, D., 2009, “Preliminary Investigation of the Effect of Dimple Size on Friction in Line Contacts”, Tribology International, Vol. 42, pp. 1118-1123.
[35]Ogawal, H., Sasaki, S., Korenaga, A., Miyake, K., Nakano, M., Murakami, T., 2010, “Effects of Surface Texture Size on the Tribological Properties of Slideways”, Journal of Engineering Tribology, Vol. 224, pp. 885-889.
[36]賴永樹,2012,“具斜楔油袋型紋理之滑動面摩擦特性探討”,國立中興大學機械工程研究所碩士論文。
[37]林明賢,2013,“具混和型紋理滑動面之進給系統摩擦特性探討”,國立中興大學機械工程學系碩士論文。[38]簡煜倫,2017,“雷射咬花技術應用於鏟花件之磨潤性能特性研究”,國立臺灣大學機械工程學系研究所製造組碩士論文。[39]亞崴機電有限公司, “『鏟花技術』機床成敗得核心關鍵”, https://reurl.cc/ZXkjjV。
[40]Greenwood, J.A., Williamson, J.B.P., 1966, “Contact of Nominal Flat Surface”, Proceedings of the Royal Society of London, Ser. A., Vol. 295, pp. 300-319.
[41]Pullen, J., Williamson, J.B.P., 1972, “On the Plastic Contact of Rough Surface”, Proceedings of the Royal Society of London, Vol. 327, pp. 157-173.
[42]Chang, W.R., Etsion, I., Bogy, D.B., 1987, “An Elastic-Plastic Model for the Contact of Rough Surface”, ASME Journal of Tribology, Vol. 110, pp. 50-56.
[43]Zhao, Y., McCool, D., Cheng, L., 2000, “An Asperity Microcontact Model Incorporating the Transition from Elastic Deformation to Fully Plastic Flow”, ASME Journal of Tribology, Vol. 122, pp. 86-93.
[44]Johnson, K.L., 1985, “Contact Mechanics”, Cambridge University Press.
[45]Abbott, E.J., Firestone, F.A., 1933, “Specifying Surface Quality-A Method Based on Accurate Measurement and Comparison”, Institution of Mechanical Engineers, Vol. 55, pp. 569.
[46]Kogut, L., Etsion, I., 2002, “Elastic-Plastic Contact Analysis of A Sphere and A Rigid Flat”, ASME Journal of Applied Mechanics, Vol. 69, No. 5, pp. 657-662.
[47]McCool, J., 1986, “Predicting Microfracture of Ceramics Via A Microcontact Model”, ASME Journal of Tribology, Vol. 108, No.3, pp. 380-386.
[48]O’Callaghan, M., Cameron, M.A., 1976, “Static Contact Under Load Between Nominally Flat Surface in Which Deformation is Purely Elastic”, Wear, Vol. 45, pp. 79-97.
[49]Hisakado, T., 1974, “Effects of Surface Roughness on Contact Between Solid Surfaces”, Wear, Vol. 28, pp. 217-234.
[50]Horng, J.H., 1998, “An Elliptic Elastic-Plastic Asperity Microcontact Model for Rough Surface”, ASME Journal of Tribology, Vol. 120, pp. 82-88.
[51]Horng, J.H., Lin, J.F., Li, K.Y., 1996, “Scuffing as Evaluated from the Viewpoint of Surface Roughness and Friction Energy”, ASME Journal of Tribology, Vol. 118, pp. 669-675.
[52]Horng, J.H., 1999, “Contact Analysis of Rough Surfaces at Transition Conditions in Sliding Line Lubrication”, Wear, Vol. 219, pp. 205-212.
[53]Pawlus, P., Zelasko, W., 2012, “The Importance of Sampling Interval for Rough Contact Mechanics”, Wear, Vol. 276-277, pp. 121-129.
[54]Beheshti, A., Khonsari, M.M., 2012 “Asperity Micro-Contact Models as Applied to the Deformation of Rough Line Contact”, Tribology International, Vol. 52, pp. 61-74.
[55]Li, L., Etsion, I., Talke, F.E., 2010, “Contact Area and Static Friction of Rough Surfaces with High Plasticity Index”, ASME Journal of Tribology, Vol. 132, pp. 669-675.
[56]Horng, J.H., Yu, C.C, Chen, Y.Y., 2023, “Effect of Third-Particle Material and Contact Mode on Tribology Contact Characteristics at Interface”, Lubricants, Vol. 11, pp. 184.
[57]Godet, M., 1984, “The Third Particle Approach: A Mechanical View of Wear”, Wear, Vol. 100, pp. 437-452.
[58]Godet, M., 1990, “Third Particles in Tribology”, Wear, Vol. 136, pp. 29-45.
[59]Heshmat, H., Godet, M., Berthier, Y., 1994, “On the Role and Mechanism of Dry Triboparticulate Lubrication”, In Proceedings of the 49th STLE Annual Meeting, Pittsburgh, PN, USA, 1-5 May.
[60]Stachowiak, G.B., Stachowiak, G.W., 2001, “The Effects of Particle Characteristics on Three-Body Abrasive Wear”, Wear, Vol. 249, pp. 201-207.
[61]Ruling, C., Shaoxian, L., 2022, “Novel Three-Body Nano-Abrasive Wear Mechanism”, Friction, Vol. 10, pp. 677-687.
[62]Popov V.L., 2018, “Is Tribology Approaching Its Golden Age? Grand Challenges in Engineering Education and Tribological Research”, Frontiers of Mechanical Engineering, Vol.4:16, pp. 1-6.
[63]Greenwood, J.A., 2020, “Metal Transfer and Wear”, Frontiers of Mechanical Engineering, Vol. 6:62, pp. 1-6.
[64]Rigney, D.A., 1992, “The Role of Characterization in Understanding Debris Generation”, Tribology Series, Vol.21, pp.405-412.
[65]Samuels, L.E., Doyle, E.D., Turley, D.M., 1981, “Sliding Wear Mechanisms”, In Fundamentals of Friction and Wear od Materials, Amer. Soc. Metals, Metals Park, Ohio, pp. 13-41.
[66]Smith, R.A., 1980, “Interfaces of Wear and Fatigue” In Fundamentals of Tribology (N.P. Suh and N.Saka, eds.), MIT Press, Cambridge, MA, pp.605- 616.
[67]Koulocheris, D., Stathis, A., Costopoulos, Th., Gyparakis, G., 2013, “Comparative Study of the Impact of Corundum Particle Contaminants Size on Wear and Fatigue Life of Grease Lubricated Ball Bearings”, Modern Mechanical Engineering, Vol. 3, No.4, pp. 161-170.
[68]Vazhappilly, C.V., Manoj Kumar, V.K., Praveen Raj, C.R., Kamalesan P., 2013, “Experimental Analysis of Vibration of Ball Bearing Considering Solid Contaminants in Lubricants”, Journal of Engineering Research and Applications, Vol. 3, pp. 1576-1580.
[69]Shan, Z.W., Adesso, G., Cabot, A., Sherburne, M.P., Syed Asif, S.A., Warren, O.L., Chrzan, D.C., Minor, A.M., Alivisatos, A.P., 2008, “Ultrahigh Stress and Strain in Hierarchically Structured Hollow Nanoparticles”, Nature Materials, Vol. 7, pp. 947-952.
[70]Zhang, N., Deng, Q.A., Hong, Y., Xiong, L.M., Li, S., Strasberg, M., Yin, W.Q., Zou, Y.J., Taylor, C.R., Sawyer, G., Chen, Y.P., 2011, “Deformation Mechanisms in Silicon Nanoparticles”, Journal of Applied Physics, Vol. 109, 063534.
[71]Deneen, J., Mook, W.M., Minor, A., Gerberich, W.W., Barry Carter, C., 2006, “In Situ Deformation of Silicon Nanospheres”, Journal of Materials Science, Vol. 41, pp. 4477-4483.
[72]Xu, T., Jiazheng, Z., Kang, X., 1996, “The Ball-Bearing Effect of Diamond Nanoparticles as An Oil Additive”, Journal of Physics D: Applied Physics, Vol. 29, No. 11, pp. 2932-2937.
[73]Zhou, J., Wu, Z., Zhang, Z., Liu, W., Xue, Q., 2000, “Tribological Behavior and Lubricating Mechanism of Cu Nanoparticles in Oil”, Tribology Letters, Vol. 8, pp. 213-218.
[74]Trezona, R.I., Allsopp, D.N., Hutchings, I.M., 1999, “Transitions Between Two-Body and Three-Body Abrasive Wear: Influence of Test Conditions in the Microscale Abrasive Wear Test”, Wear, Vol. 225-229, pp. 205-214.
[75]Adachi, K., Hutchings, I.M., 2003, “Wear-Mode Mapping for the Micro-Scale Abrasion Test”, Wear, Vol. 255, pp. 23-29.
[76]Stempfle, P., Pantale, O., Djilali, T., Njiwa, R.K., Bourrat, X., Takadoum, J., 2010, “Evaluation of the Real Contact Area in Three-Body Dry Friction by Micro-Thermal Analysis”, Tribology International, Vol. 43, pp. 1794-1805.
[77]Ghaednia, H., Jackson, R.L., 2013, “The Effect of Nanoparticles on the Real Area of Contact Friction, and Wear”, ASME Journal of Tribology, Vol. 135, 041603.
[78]Croné, P., Gudmundson, P., Faleskog, J., 2022, “Analytical Prediction of Yield Stress and Strain Hardening in A Strain Gradient Plasticity Material Reinforced by Small Elastic Particles”, International Journal of Plasticity, Vol. 151, 103200.
[79]Umeda, A., Sugimura, J., Yamamoto, Y., 1998, “Characterization of Wear Particles and Their Relations with Sliding Conditions”, Wear, Vol. 216(2), pp. 220-228.
[80]Chen, W.W., Wang, Q.J., Kim W., 2009, “Transient Thermomechanical Analysis of Sliding Electrical Contacts of Elastoplastic Bodies, Thermal Softening, and Melting Inception”, ASME Journal of Tribology, Vol. 131(2), 021406.
[81]Zhang, X., Lin, B., Xi, H., 2013, “Validation of An Analytical Model for Grinding Temperatures in Surface Grinding by Cup Wheel with Numerical and Experimental Results”, International Journal of Heat and Mass Transfer, Vol. 58, pp. 29-42.
[82]Chern, S.Y., Chen, Y.Y., Liu, W.L., Horng, J.H., 2022, “Contact Characteristics at Interface in Three-Body Contact Conditions with Rough Surfaces and Foreign Particles”, Lubricants, Vol. 10, 164.
[83]Miftakhova, A., Chen, Y.Y., Horng, J.H., 2019, “Effect of Rolling on the Friction Coefficient in Three-Body Contact”, Advances in Mechanical Engineering, Vol. 11, 1687814019872303.
[84]Singh, Y., Rahim, E.A., Singh, N.K., Sharma, A., Singla, A., Palamanit, A., 2022, “Friction and Wear Characteristics of Chemically Modified Mahua (Madhuca Indica) Oil Based Lubricant with SiO2 Nanoparticles as Additives” Wear, Vol. 508-509, 204463.
[85]Boungomba, H., Moreau, P., Sadat, T., Dubois, R., Dubar, M., Dubar, L., 2023, “Influence of Oxide Polluted Lubricants on Friction: Trapping Mechanisms”, Tribology International, Vol. 179, 108164.
[86]Horng, J.H., Yu, C.C., Chen, Y.Y., 2021, “Tribological Characteristics and Load-Sharing of Point-Contact Interface in Three-Body Mixed Lubrication”, ASME Journal of Tribology, Vol. 144, 052201.
[87]Mir, A.H., 2015, “Improved Concrete Properties Using Quarry Dust as Replacement for Natural Sand”, International Journal of Engineering Research and Development, Vol. 11, 46-52.
[88]Shruti, V. C., Peréz-Guevara, F., Elizalde-Martínez, I., Kutralam-Muniasamy, G., 2020, “First Study of Its Kind on the Microplastic Contamination of Soft Drinks, Cold Tea and Energy Drinks - Future Research and Environmental Considerations”, Science of The Total Environment, Vol. 726, pp. 138580.
[89]Celik, G., Kennedy, R., Hackler, R., Ferrandon, M., Tennakoon, A., Patnaik, S., LaPointe, A., Ammal, S., Heyden, A., Perras, F., Pruski, M., Scott, S., Poeppelmeier, K., Sadow, A., Delferro, M., 2019, “Upcycling Single-Use Polyethylene into High-Quality Liquid Products”, ACS Central Science, Vol. 5(11), pp. 1795-1803.
[90]Choi, Y., Lee, C., Hwang, Y., Park, M., Lee, J., Choi, C., Jung, M., 2009, “Tribological Behavior of Copper Nanoparticles as Additives in Oil”, Current Applied Physics, Vol. 9, e124-e127.
[91]Alves, S.M., Barros, B.S., Trajano, M.F., Ribeiro, K.S.B., Moura, E., 2013, “Tribological Behavior of Vegetable Oil-Based Lubricants with Nanoparticles of Oxides in Boundary Lubrication conditions”, Tribology International, Vol. 65, pp. 28-36.
[92]Wu, C., Xiong, R., Ni, J., Yao, L., Li, X., 2020, “Effects of CuO Nanoparticles on Friction and Vibration Behaviors of Grease on Rolling Bearing”, Tribology International, Vol. 152, 106552.
[93]Kumar, S., Kumar, R., 2023, “Tribological Characteristics of Synthesized Hybrid Nanofluid Composed of CuO and TiO2 Nanoparticle Additives”, Wear, Vol. 518-519, 204623.
[94]Johnson, K.L., Greenwood, J.A., Poon, S.Y., 1972, “A Simple Theory of Asperity Contacts in Elastohydrodynamic Lubrication”, Wear, Vol. 19(1), pp. 91-108.
[95]Liu, Z., Gangopadhyay, A., 2016, “Friction Reduction in Lubricated Rough Contacts: Numerical and Experimental Studies”, ASME Journal of Tribology, Vol. 138(2), 021506.
[96]Chen, W., Engel, P., 1972, “Impact and Contact Stress Analysis in Multilayer Media”, International Journal of Solids and Structures, Vol. 8(11), pp. 1257-1281.
[97]Nijenbanning, G., Venner, C.H., Moes, H., 1994, “Film Thickness in Elastohydrodynamically Lubricated Elliptic Contacts”, Wear, Vol. 176(2), pp. 217-229.
[98]Masjedi, M., Khonsari, M.M., 2012, “Film Thickness and Asperity Load Formulas for Line-Contact Elastohydrodynamic Lubrication With Provision for Surface Roughness”, ASME Journal of Tribology, Vol. 134(1), 011503.
[99]Masjedi, M., Khonsari, M.M., 2014, “Mixed Elastohydrodynamic Lubrication Line-Contact Formulas with Different Surface Patterns”, Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, Vol. 228(8), pp. 849–859.
[100]Masjedi, M., Khonsari, M.M., 2014, “Theoretical and Experimental Investigation of Traction Coefficient in Line-Contact EHL of Rough Surfaces”, Tribology International, Vol. 70(1), pp. 179-189.
[101]Patir, N., Cheng, H.S., 1978, “An Average Flow Model for Determining Effects of Three-Dimensional Roughness on Partial Hydrodynamic Lubrication,”, ASME Journal of Lubrication Technology, Vol. 100(1), pp. 12-17.
[102]Masjedi, M., Khonsari, M.M., 2015, “On the Effect of Surface Roughness in Point-Contact EHL: Formulas for Film Thickness and Asperity Load”, Tribology International, Vol. 82(A), pp. 228-244.
[103]Dobrica, M.B., Fillon, M., Maspeyroy, P., 2006, “Mixed Elastohydrodynamic Lubrication in a Partial Journal Bearing-Comparison Between Deterministic and Stochastic Models”, ASME Journal of Tribology, Vol. 128(4), pp. 778-788.
[104]Dobrica, M.B., Fillon, M., Maspeyroy, P., 2008, “Influence of Mixed-Lubrication and Rough Elastic-Plastic Contact on the Performance of Small Fluid Film Bearings”, STLE Tribology Transactions, Vol. 51(6), pp. 699-717.
[105]Zhu, D., Wang, Q.J., 2013, “Effect of Roughness Orientation on the Elastohydrodynamic Lubrication Film Thickness”, ASME Journal of Tribology, Vol. 135(3), 031501.
[106]Azam, A., Dorgham, A., Morina, A., Neville, A., Wilson, C.T., 2019, “A Simple Deterministic Plastoelastohydrodynamic Lubrication (PEHL) Model in Mixed Lubrication”, Tribology International, Vol. 131(1), pp. 520-529.
[107]Zapletal, T., Sperka, P., Krupka, I., Hartl, M., 2020, “On the Relation Between Friction Increase and Grease Thickener Entraining on a Border of Mixed EHL Lubrication”, Lubricants, Vol. 8(2), pp. 1-11.
[108]Battez, A.H., González, R., Viesca J.L., Fernández, J.E., FernándezJ.M.D., Machado, A., Chou, R., Riba, J., 2008, “CuO, ZrO2 and ZnO Nanoparticles as Antiwear Additive in Oil Lubricants”, Wear, vol. 265(3-4), pp. 422-428.
[109]Sepyani, K., Afrand, M., Hemmat, E.M., 2017, “An Experimental Evaluation of the Effect of ZnO Nanoparticles on the Rheological Behavior of Engine Oil”, Journal of Molecular Liquids, Vol. 236, pp. 198-204.
[110]Geng, Y., Al-Rashed, A.A.A.A., Mahmoudi, B., Alsagri, A.S., Shahsavar, A., Talebizadehsardari, P., 2019, “Characterization of the Nanoparticles, the Stability Analysis and the Evaluation of a New Hybrid Nano-Oil Thermal Conductivity”, Journal of Thermal Analysis and Calorimetry, Vol. 139, pp. 1553-1564.
[111]Hemmat, E.M., Bahiraei, M., Hajmohammad, M.H., Afrand M., 2017, “Rheological Characteristics of MgO/Oil Nanolubricants: Experimental Study and Neural Network Modelling”, International Communications in Heat and Mass Transfer, Vol. 86, pp. 245-252.
[112]Ahmadi, N.A., Hemmat, E.M., Afrand M., 2017, “Evaluation of Rheological Behavior of 10W40 Lubricant Containing Hybrid Nano-Material by Measuring Dynamic Viscosity”, Physica E: Low-Dimensional Systems and Nanostructures, Vol. 92, pp. 47-54.
[113]Asadi, A., Asadi, M., Rezaniakolaei, A., Rosendahl, L.A., Afrand, M., Wongwises, S., 2018, “Heat Transfer Efficiency of Al2O3-MWCNT/Thermal Oil Hybrid Nanofluid as a Cooling Fluid in Thermal and Energy Management Applications: An Experimental and Theoretical Investigation”, International Journal of Heat and Mass Transfer, Vol. 117, pp. 474–486.
[114]Ali, I., Basheer, A.A., Kucherova, A., Memetov, N., Pasko, T., Ovchinnikov, K., Tkachev, A., 2019, “Advances in Carbon Nanomaterials as Lubricants Modifiers”, Journal of Molecular Liquids, Vol. 279, pp. 251-266.
[115]Sunqing, Q., Junxiu, D., Guoxu, C., 1999, “A Review of Ultrafine Particles as Antiwear Additives and Friction Modifiers in Lubricating Oils”, Lubrication Science, Vol. 11, pp. 217-226.
[116]Rapoport, L., Leshchinsky, V., Lvovsky, M., Lapsker, I., Volovik, Y., Feldman, Y., Popovitz-Biro, R., Tenne, R., 2003, “Superior Tribological Properties of Powder Materials with Solid Lubricant Nanoparticles”, Wear , Vol. 255, pp. 794-800.
[117]Wornyoh, E.Y.A., Jasti, V.K., Higgs, C.F., 2007, “A Review of Dry Particulate Lubrication: Powder and Granular Materials”, ASME Journal of Tribology, Vol. 129, pp. 438-449.
[118]Aghbashlo, M., Tabatabaei, M., Khalife, E., Najafi, B., Mirsalim, S.M., Gharehghani, A., Mohammadi, P., Dadak, A., Shojaei, T.R., Khounani, Z., 2017, “A Novel Emulsion Fuel Containing Aqueous Nano Cerium Oxide Additive in Diesel-Biodiesel Blends to Im-Prove Diesel Engines Performance and Reduce Exhaust Emissions: Part II-Exergetic Analysis”, Fuel, Vol. 205, pp. 262-271.
[119]Asnida, M., Hisham, S., Awang, N.W., Amirruddin, A.K., Noor, M.M., Kadirgama, K., Ramasamy, D., Najafi, G., Tarlochan, F. 2018, “Copper (II) Oxide Nanoparticles as Additve in Engine Oil to Increase the Durability of Piston-Liner Contact”, Fuel, Vol. 212, pp. 656-667.
[120]Bhaumik, S., Maggirwar, R., Datta, S., Pathak, S.D., 2018, “Analyses of Anti-Wear and Extreme Pressure Properties of Castor Oil with Zinc Oxide Nano Friction Modifiers”, Applied Surface Science, Vol. 449, pp. 277-286.
[121]Nabhan, A., Rashed, A., Ghazay, N.M., Abdo, J., Haneef, M.D., 2021 “Tribological Properties of Al2O3 Nanoparticles as Lithium Grease Additives”, Lubricants, Vol. 9, 9.
[122]Chen, H., Wu, Z., Hai, W., Liu, L., Sun, W., 2021, “Tribo-Oxidation and Tribological Behaviour of ZrB2-20%volSiC Composites Coupled with WC and Al2O3 at High Temperatures”, Wear, Vol. 464-465, 203534.
[123]Singh, Y., Singh, N.K., Sharma, A., 2021, “Effect of SiO2 Nanoparticles on the Tribological Behavior of Balanites Aegytiaca (Desert date) Oil-Based Biolubricant”, J. Bio Tribo. Corros., Vol. 7, pp. 1-6.
[124]Wang, W., Yu, M., Ma, J., Jia, Y., 2023, “Tribological Properties of Nanoparticles in the Presence of MoDTC”, Lubricants, Vol. 11, 132.
[125]Horng, J.H., Chern, S.Y., Li, C.L., Chen, Y.Y., 2017, “Surface Temperature and Wear Particle Analysis of Vertical Motion Double-Nut Ball Screws”, Industrial Lubrication and Tribology, Vol. 69, pp. 952-962.
[126]Peña-Parás, L., Gao, H., Maldonado-Cortés, D., Vellore, A., García-Pineda, P., Montemayor, O.E., Nava, K.L., Martini, M., 2018, “Effects of Substrate Surface Roughness and Nano/Micro Particle Additive Size on Friction and Wear in Lubricated Sliding”, Tribology International, Vol. 119, pp. 88-98.
[127]Kumar, N., Saini, V., Bijwe, J., 2020, “Performance Properties of Lithium Greases with PTFE Particles as Additive: Controlling Parameter- Size or Shape?”, Tribology International, Vol. 148, 106302.
[128]Ghaednia, H., Jackson, R.L., Khodadadi, J.M., 2015, “Experimental Analysis of Stable CuO Nanoparticle Enhanced Lubricants”, Journal of Experimental Nanoscience, Vol. 10, pp. 1-18.
[129]Awang, N.W., Ramasamy, D., Kadirgama, K., Najafi, G., Sidik, N.A.C., 2019, “Study on Friction and Wear of Cellulose Nanocrystal (CNC) Nanoparticle as Lubricating Additive in Engine Oil”, International Journal of Heat and Mass Transfer, Vol. 131, pp. 1196-1204.
[130]Cortes, V., Sanchez, K., Gonzalez, R., Alcoutlabi, M., Ortega, J.A., 2020, “The Performance of SiO2 and TiO2 Nanoparticles as Lubricant Additives in Sunflower Oil” Lubricants, Vol. 8, 10.
[131]Ta, T.N., Chern, S.Y., Horng, J.H., 2021, “Tribological Behavior of Ionic Liquid with Nanoparticles”, Materials, Vol. 14, 6318.
[132]Abdel-Rehim, A.A., Akl, S., Elsoudy, S., 2021, “Investigation of the Tribological Behavior of Mineral Lubricant Using Copper Oxide Nano Additives”, Lubricants, Vol. 9, 16.
[133]Kanojia, R., Singh, Y., Mishra, P., Negi, P., 2021, “SiO2 Nanoparticles Effect to the Mahua Oil for Friction and Wear Characterization”, Materials Today: Proceedings, Vol. 46, pp.10492-10495.
[134]Whitworth, J., 1858, “A Paper on Plane Metallic Surfaces or True Planes”, Miscellaneous Papers on Mechanical Subjects, Longman, Brown, Green, Longmans, and Roberts: London, UK.
[135]Hou, Y., Chen, D., Zheng, L., 1985. “Effect of Surface Topography of Scraped Machine Tool Guideways on Their Tribological Behavior”, Tribology International., Vol. 18, pp. 125-129.
[136]OKUMA white paper, 2013, “Hand Scraping Sets the Foundation for CNC Machining Accuracy and Long-Term Stability”.
[137]Greenwood, J.A., Tripp, J.H., 1970, “The Contact of Two Nominally Flat Rough Surfaces”, Proceedings of the Institution of Mechanical Engineers, Vol. 185, pp. 625-633.
[138]Shi, W., Zhang, Z., 2022, “Contact Characteristic Parameters Modeling for the Assembled Structure with Bolted Joints”, Tribology International, Vol. 165, 107272.
[139]Wu, H.W., Chen, Y.Y., Horng, J.H., “The Analysis of Three-Body Contact Temperature Under the Different Third Particle Size, Density, and Value of Friction”, Micromachines, Vol. 8, 302.
[140]Xie, H., Jiang, B., He, J., Xia, X., Pan, F., 2016, “Lubrication Performance of MoS2 and SiO2 Nanoparticles as Lubricant Additives in Magnesium Alloy-Steel Contacts”, Tribology International, Vol. 93, pp. 63-70.
[141]Horng, J.H., Jeng, Y.R., Chen, C.L., 2004, “A Model for Temperature Rise of Polishing Process Considering Effects of Polishing Pad and Abrasive”, ASME Journal of Tribology, Vol. 126, pp. 422-429.
[142]李木元,2018,“點蝕磨耗在油潤滑情況下之特徵研究”,國立虎尾科技大學動力機械工程系碩士論文,國立虎尾科技大學動力機械工程系。[143]CPC Corporation, “CPC Circulation Oil R68”, https://reurl.cc/Rzq1XZ
[144]Umbrello, D., Hua, J., Shivpuri, R., 2004, “Hardness-Based Flow Stress and Fracture Models for Numerical Simulation of Hard Machining AISI 52100 Bearing Steel”, Materials Science and Engineering: A, Vol. 374, pp. 90-100.
[145]Jang, J.S., Bouveret, B., Suhr, J., Gibson, R.F., 2012, “Combined Numerical/Experimental Investigation of Particle Diameter and Interphase Effects on Coefficient of Thermal Expansion and Young's Modulus of SiO2/Epoxy Nanocomposites”, Polym. Composites, Vol. 33, pp.1415-1423.
[146]Abyzov, A.M., 2019, “Aluminum Oxide and Alumina Ceramics (Review). Part 1. Properties of Al2O3 and Commercial Production of Dispersed Al2O3. Refract”, Refractories and Industrial Ceramics, Vol. 60, pp. 24-32.
[147]Mobil, “Mobil Vactra Oil NO. 2 導軌及滑道油”, https://reurl.cc/Ye0olx
[148]國立成功大學, “貴儀中心”, https://reurl.cc/eDMvyQ
[149]Spikes, H.A., 2006, “Sixty Years of EHL” Lubrication Science, Vol. 18(4), pp. 265-291.
[150]Yao, B., Zhou, X., Liu, M., Yu, J., Cao, J., Wang, L., 2018, “First-Principles Calculations on Phase Transformation and Elastic Properties of CuO Under Pressure” Journal of Computational Electronics, Vol. 17, pp. 1450-1456.
[151]Liang, X.M., Xing, Y.Z., Li, L.T., Yuan, W.K., Wang, G.F., 2021, “An experimental study on the relation between friction force and real contact area” Sci. Rep., Vol. 11, pp. 20366.