|
Bruins, M. R., Kapil, S., & Oehme, F. W. (2000). Microbial resistance to metals in the environment. Ecotoxicology and Environmental Safety, 45(3), 198-207. Choe, E., van der Meer, F., van Ruitenbeek, F., van der Werff, H., de Smeth, B., & Kim, K.-W. (2008). Mapping of heavy metal pollution in stream sediments using combined geochemistry, field spectroscopy, and hyperspectral remote sensing: A case study of the Rodalquilar mining area, SE Spain. Remote Sensing of Environment, 112(7), 3222-3233. Chou, J.-S., Ho, C.-C., & Hoang, H.-S. (2018). Determining quality of water in reservoir using machine learning. Ecological Informatics, 44, 57-75. Corbet, C. A. (2007). Colored Dissolved Organic Matter (CDOM) Workshop summary. Dörnhöfer, K., & Oppelt, N. (2016). Remote sensing for lake research and monitoring – Recent advances. Ecological Indicators, 64, 105-122. de la Mare, W., Ellis, N., Pascual, R., & Tickell, S. (2012). An empirical model of water quality for use in rapid management strategy evaluation in Southeast Queensland, Australia. Marine Pollution Bulletin, 64(4), 704-711. Fittschen, U. E. A., & Falkenberg, G. (2011). Trends in environmental science using microscopic X-ray fluorescence. Spectrochimica Acta Part B: Atomic Spectroscopy, 66(8), 567-580. Galdames, F. J., Perez, C. A., Estévez, P. A., & Adams, M. (2019). Rock lithological classification by hyperspectral, range 3D and color images. Chemometrics and Intelligent Laboratory Systems, 189, 138-148. Gholizadeh, M. H., Melesse, A. M., & Reddi, L. (2016). A comprehensive review on water quality parameters estimation using remote sensing techniques. Sensors (Basel), 16(8). Ghosh, A., Fassnacht, F. E., Joshi, P. K., & Koch, B. (2014). A framework for mapping tree species combining hyperspectral and LiDAR data: Role of selected classifiers and sensor across three spatial scales. International Journal of Applied Earth Observation and Geoinformation, 26, 49-63. Guo, L., Zhang, H., Shi, T., Chen, Y., Jiang, Q., & Linderman, M. (2019). Prediction of soil organic carbon stock by laboratory spectral data and airborne hyperspectral images. Geoderma, 337, 32-41. Hacısalihoğlu, S., & Karaer, F. (2016). Relationships of heavy metals in water and surface sediment with different chemical fractions in Lake Uluabat, Turkey. Polish Journal of Environmental Studies, 25(5), 1937-1946. Jolivet, L., Leprince, M., Moncayo, S., Sorbier, L., Lienemann, C.-P., & Motto-Ros, V. (2019). Review of the recent advances and applications of LIBS-based imaging. Spectrochimica Acta Part B: Atomic Spectroscopy, 151, 41-53. Julian, J. P., Davies-Colley, R. J., Gallegos, C. L., & Tran, T. (2013). Optical water quality of inland waters: a landscape perspective. Annals of the Association of American Geographers, 103(2), 309-318. Koponen, S., Pulliainen, J., & Kallio, K., & Hallikainen, M. (2002). Lake water quality classification with airborne hyperspectral spectrometer and simulated MERIS data. Remote Sensing of Environment, 79, 51-59. Liu, J.-J., Diao, Z.-H., Xu, X.-R., & Xie, Q. (2019). Effects of dissolved oxygen, salinity, nitrogen and phosphorus on the release of heavy metals from coastal sediments. Sci Total Environ, 666, 894-901. Liu, L., Feng, J., Rivard, B., Xu, X., Zhou, J., Han, L., Yang, J., & Ren, G. (2018). Mapping alteration using imagery from the Tiangong-1 hyperspectral spaceborne system: Example for the Jintanzi gold province, China. International Journal of Applied Earth Observation and Geoinformation, 64, 275-286. Mather, P. M., & Koch, M. (2011). Computer Processing of Remotely-Sensed Images: An Introduction., John Wiley & Sons, Inc. Mirzaei, M., Verrelst, J., Marofi, S., Abbasi, M., & Azadi, H. (2019). Eco-friendly estimation of heavy metal contents in grapevine foliage using in-field hyperspectral data and multivariate analysis. Remote Sensing, 11(23), 2731. Nasrabadi, T., Ruegner, H., Sirdari, Z. Z., Schwientek, M., & Grathwohl, P. (2016). Using total suspended solids (TSS) and turbidity as proxies for evaluation of metal transport in river water. Applied Geochemistry, 68, 1-9. Németh, T., & Kádár, I. (2005). Leaching of microelement contaminants: a long-term field study. Zeitschrift für Naturforschung C, 60, 260-264. Onojeghuo, A. O., & Blackburn, G. A. (2011). Optimising the use of hyperspectral and LiDAR data for mapping reedbed habitats. Remote Sensing of Environment, 115(8), 2025-2034. Pearson, D., Chakraborty, S., Duda, B., Li, B., Weindorf, D. C., Deb, S., Brevik ,E., Ray, & D. P. (2017). Water analysis via portable X-ray fluorescence spectrometry. Journal of Hydrology, 544, 172-179. Pelta, R., Carmon, N., & Ben-Dor, E. (2019). A machine learning approach to detect crude oil contamination in a real scenario using hyperspectral remote sensing. International Journal of Applied Earth Observation and Geoinformation, 82, 101901. Popescu, C.-M., Navi, Placencia Peña, M. I., & Popescu, M.-C. (2018). Structural changes of wood during hydro-thermal and thermal treatments evaluated through NIR spectroscopy and principal component analysis. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 191, 405-412. Rostom, N. G., Shalaby, A. A., Issa, Y. M., Afifi, A. A. (2017). Evaluation of Mariut Lake water quality using Hyperspectral Remote Sensing and laboratory works. The Egyptian Journal of Remote Sensing and Space Science, 20, S39-S48. Serranti, S., Palmieri, R., Bonifazi, G., & Cózar, A. (2018). Characterization of microplastic litter from oceans by an innovative approach based on hyperspectral imaging. Waste Manag, 76, 117-125. Stehle, P., Stoffel-Wagner, B., & Kuhn, K. S. (2016). Parenteral trace element provision: recent clinical research and practical conclusions. European Journal of Clinical Nutrition, 70, 886-893. Szili-Kovács T, Anton, A., Gulyás, F. (2000). Effect of Cd, Ni and Cu on some microbial properties of a calcareous chernozem soil. In: Kubát J, Prague (ed.) Proceedings of the 2nd Symposium on the pathways and consequences of the dissemination of pollutants in the biosphere, Prague, 88–102. Tan, K., Wang, H., Chen, L., Du, Q., Du, P., & Pan, C. (2019). Estimation of the spatial distribution of heavy metal in agricultural soils using airborne hyperspectral imaging and random forest. Journal of Hazardous Materials, 382, 120987. Van den Noortgate, W., López-López, J. A., Marín-Martínez, F., & Sánchez-Meca, J. (2015). Meta-analysis of multiple outcomes: a multilevel approach. Behavior Research Methods, 47(4), 1274-1294. Wang, F., Gao, J., & Zha, Y. (2018). Hyperspectral sensing of heavy metals in soil and vegetation: Feasibility and challenges. ISPRS Journal of Photogrammetry and Remote Sensing, 136, 73-84. Zhou, H., Deng, Z., Xia, Y., & Fu, M. (2016). A new sampling method in particle filter based on Pearson correlation coefficient. Neurocomputing, 216, 208-215. Zhou, W., Liu, H., Xu, Q., Li, P., Zhao, L., & Gao, H. (2020). Glycerol's generalized two-dimensional correlation IR/NIR spectroscopy and its principal component analysis. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 228, 117824. 江守山. (2006). 重金屬汙染事件頻傳有害國人健康-如何檢查及治療重金屬汙染. 新光醫訊, 173. 行政院環境保護署. (2018). 107環境水質年報. 施介嵐. (2002). 以光譜混合分析法進行台灣地區Master影像之研究. 鄭森雄. (2009). 台灣之河川污染及其與生態環境之關係. 台美環保及再生研究會專題演講.
|