|
Reference 1.A.P. Simpson, A.E. Lutz, Exergy analysis of hydrogen production via steam methane reforming, International Journal of Hydrogen Energy, 32 (2007) 4811-4820. 2.D.R. Palo, R.A. Dagle, J.D. Holladay, Methanol Steam Reforming for Hydrogen Production, Chemical Reviews, 107 (2007) 3992-4021. 3.X. Zhuo, W. Jiang, G. Qian, J. Chen, T. Yu, L. Luo, L. Lu, Y. Chen, S. Yin, Ni3S2/Ni Heterostructure Nanobelt Arrays as Bifunctional Catalysts for Urea-Rich Wastewater Degradation, ACS Applied Materials & Interfaces, 13 (2021) 35709-35718. 4.B.K. Boggs, R.L. King, G.G. Botte, Urea electrolysis: direct hydrogen production from urine, Chemical Communications, (2009) 4859-4861. 5.O.M. Yaghi, G. Li, H. Li, Selective binding and removal of guests in a microporous metal–organic framework, Nature, 378 (1995) 703-706. 6.H. Li, M. Eddaoudi, M. O'Keeffe, O.M. Yaghi, Design and synthesis of an exceptionally stable and highly porous metal-organic framework, Nature, 402 (1999) 276-279. 7.D.J. Tranchemontagne, J.R. Hunt, O.M. Yaghi, Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0, Tetrahedron, 64 (2008) 8553-8557. 8.Q. Liu, L. Xie, X. Shi, G. Du, A.M. Asiri, Y. Luo, X. Sun, High-performance water oxidation electrocatalysis enabled by a Ni-MOF nanosheet array, Inorganic Chemistry Frontiers, 5 (2018) 1570-1574. 9.J. Luo, J.-H. Im, M.T. Mayer, M. Schreier, M.K. Nazeeruddin, N.-G. Park, S.D. Tilley, H.J. Fan, M. Grätzel, Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts, Science, 345 (2014) 1593-1596. 10.S. Klaus, Y. Cai, M.W. Louie, L. Trotochaud, A.T. Bell, Effects of Fe Electrolyte Impurities on Ni(OH)2/NiOOH Structure and Oxygen Evolution Activity, The Journal of Physical Chemistry C, 119 (2015) 7243-7254. 11.Z. Peng, D.S. Jia, A.M. Al-Enizi, A.A. Elzatahry, G.F. Zheng, From Water Oxidation to Reduction: Homologous Ni-Co Based Nanowires as Complementary Water Splitting Electrocatalysts, Advanced Energy Materials, 5 (2015). 12.H. Liang, F. Meng, M. Cabán-Acevedo, L. Li, A. Forticaux, L. Xiu, Z. Wang, S. Jin, Hydrothermal continuous flow synthesis and exfoliation of NiCo layered double hydroxide nanosheets for enhanced oxygen evolution catalysis, Nano letters, 15 (2015) 1421-1427. 13.X.F. Xu, Q.M. Deng, H.C. Chen, M. Humayun, D.L. Duan, X. Zhang, H.C. Sun, X. Ao, X.Y. Xue, A. Nikiforov, K.F. Huo, C.D. Wang, Y.J. Xiong, Metal-Organic Frameworks Offering Tunable Binary Active Sites toward Highly Efficient Urea Oxidation Electrolysis, Research, 2022 (2022) 12. 14.Y. Xu, X. Chai, T. Ren, S. Yu, H. Yu, Z. Wang, X. Li, L. Wang, H. Wang, Ir-Doped Ni-based metal–organic framework ultrathin nanosheets on Ni foam for enhanced urea electro-oxidation, Chemical Communications, 56 (2020) 2151-2154. 15.V. Maruthapandian, S. Kumaraguru, S. Mohan, V. Saraswathy, S. Muralidharan, An Insight on the Electrocatalytic Mechanistic Study of Pristine Ni MOF (BTC) in Alkaline Medium for Enhanced OER and UOR, Chemelectrochem, 5 (2018) 2795-2807. 16.C. Prestipino, L. Regli, J.G. Vitillo, F. Bonino, A. Damin, C. Lamberti, A. Zecchina, P.L. Solari, K.O. Kongshaug, S. Bordiga, Local Structure of Framework Cu(II) in HKUST-1 Metallorganic Framework: Spectroscopic Characterization upon Activation and Interaction with Adsorbates, Chemistry of Materials, 18 (2006) 1337-1346. 17.J. Cheng, X. Yang, X. Yang, R. Xia, Y. Xu, W. Sun, J. Zhou, Hierarchical Ni3S2@2D Co MOF nanosheets as efficient hetero-electrocatalyst for hydrogen evolution reaction in alkaline solution, Fuel Processing Technology, 229 (2022) 107174. 18.B. Zhu, Z. Liang, R. Zou, Designing Advanced Catalysts for Energy Conversion Based on Urea Oxidation Reaction, Small, (2020) e1906133. 19.D. Wei, W. Tang, N. Ma, Y. Wang, NiCo bimetal organic frames derived well-matched electrocatalyst pair for highly efficient overall urea solution electrolysis, Journal of Alloys and Compounds, 874 (2021) 159945. 20.M. Li, X. Ao, J.-G. Li, H. Sun, L. Zheng, C. Wang, NiCo-BDC nanosheets coated with amorphous Ni-S thin film for high-efficiency oxygen evolution reaction and urea oxidation reaction, FlatChem, 25 (2021) 100222. 21.Q. Ren, J.-Q. Wu, C.-F. Li, L.-F. Gu, L.-J. Xie, Y. Wang, G.-R. Li, Hierarchical porous Ni, Fe-codoped Co-hydroxide arrays derived from metal–organic-frameworks for enhanced oxygen evolution, Chemical Communications, 57 (2021) 1522-1525. 22.B. Ma, Z. Yang, Y. Chen, Z. Yuan, Nickel cobalt phosphide with three-dimensional nanostructure as a highly efficient electrocatalyst for hydrogen evolution reaction in both acidic and alkaline electrolytes, Nano Research, 12 (2019) 375-380. 23.A.I. Inamdar, H.S. Chavan, S.M. Pawar, H. Kim, H. Im, NiFeCo oxide as an efficient and sustainable catalyst for the oxygen evolution reaction, International Journal of Energy Research, 44 (2020) 1789-1797. 24.X.H. Zhao, Z.M. Xue, W.J. Chen, X.Y. Bai, R.F. Shi, T.C. Mu, Ambient fast, large-scale synthesis of entropy-stabilized metal-organic framework nanosheets for electrocatalytic oxygen evolution, Journal of Materials Chemistry A, 7 (2019) 26238-26242. 25.S. Zhao, Y. Wang, J. Dong, C.-T. He, H. Yin, P. An, K. Zhao, X. Zhang, C. Gao, L. Zhang, J. Lv, J. Wang, J. Zhang, A.M. Khattak, N.A. Khan, Z. Wei, J. Zhang, S. Liu, H. Zhao, Z. Tang, Ultrathin metal–organic framework nanosheets for electrocatalytic oxygen evolution, Nature Energy, 1 (2016) 16184. 26.A. Mesbah, P. Rabu, R. Sibille, S. Lebègue, T. Mazet, B. Malaman, M. François, From Hydrated Ni3(OH)2(C8H4O4)2(H2O)4 to Anhydrous Ni2(OH)2(C8H4O4): Impact of Structural Transformations on Magnetic Properties, Inorganic Chemistry, 53 (2014) 872-881. 27.A. Laís Weber, S. Cleiser Thiago Pereira da, L. Hugo Henrique Carline de, M. Murilo Pereira, R. Andrelson Wellington, Evaluation of the synthetic methods for preparing metal organic frameworks with transition metals, AIMS Materials Science, 5 (2018) 467-478. 28.X. Cai, X. Shen, L. Ma, Z. Ji, C. Xu, A. Yuan, Solvothermal synthesis of NiCo-layered double hydroxide nanosheets decorated on RGO sheets for high performance supercapacitor, Chemical Engineering Journal, 268 (2015) 251-259. 29.Y.H. Hu, L. Zhang, Amorphization of metal-organic framework MOF-5 at unusually low applied pressure, Physical Review B, 81 (2010) 174103. 30.S. Bordiga, C. Lamberti, G. Ricchiardi, L. Regli, F. Bonino, A. Damin, K.P. Lillerud, M. Bjorgen, A. Zecchina, Electronic and vibrational properties of a MOF-5 metal–organic framework: ZnO quantum dot behaviour, Chemical Communications, (2004) 2300-2301. 31.C. Qiang, M. Liu, L. Zhang, Z. Chen, Z. Fang, In Situ Growth of Ni-Based Metal–Organic Framework Nanosheets on Carbon Nanotube Films for Efficient Oxygen Evolution Reaction, Inorganic Chemistry, 60 (2021) 3439-3446. 32.L.W. Aguiar, C.T.P. da Silva, H.H.C. de Lima, M.P. Moises, A.W. Rinaldi, Evaluation of the synthetic methods for preparing metal organic frameworks with transition metals, Aims Materials Science, 5 (2018) 467-478. 33.M. Todaro, A. Alessi, L. Sciortino, S. Agnello, M. Cannas, F.M. Gelardi, G. Buscarino, Investigation by Raman Spectroscopy of the Decomposition Process of HKUST-1 upon Exposure to Air, Journal of Spectroscopy, 2016 (2016) 8074297. 34.H.W. Chang, Y.N. Zhou, S.Y. Zhang, X.L. Zheng, Q. Xu, CO2-Induced 2D Ni-BDC Metal-Organic Frameworks with Enhanced Photocatalytic CO2 Reduction Activity, Advanced Materials Interfaces, 8 (2021). 35.W. Chen, L. Wei, Z. Lin, Q. Liu, Y. Chen, Y. Lin, Z. Huang, Hierarchical flower-like NiCo2O4@ TiO2 hetero-nanosheets as anodes for lithium ion batteries, RSC Advances, 7 (2017) 47602-47613. 36.B. Hadzic, N. Romcevic, M. Romcevic, I. Kuryliszyn-Kudelska, W.D. Dobrowolski, U. Narkiewicz, D. Sibera, Raman study of surface optical phonons in ZnO(Co) nanoparticles prepared by hydrothermal method, Hemijska Industrija, 67 (2013) 695-701. 37.B. Hadžić, N. Romčević, D. Sibera, U. Narkiewicz, I. Kuryliszyn-Kudelska, W. Dobrowolski, M. Romčević, Laser power influence on Raman spectra of ZnO(Co) nanoparticles, Journal of Physics and Chemistry of Solids, 91 (2016) 80-85. 38.H. Wang, H. Zou, Y. Liu, Z. Liu, W. Sun, K.A. Lin, T. Li, S. Luo, Ni2P nanocrystals embedded Ni-MOF nanosheets supported on nickel foam as bifunctional electrocatalyst for urea electrolysis, Scientific Reports, 11 (2021) 21414. 39.X. Zhang, X. Fang, K. Zhu, W. Yuan, T. Jiang, H. Xue, J. Tian, Fe-doping induced electronic structure reconstruction in Ni-based metal-organic framework for improved energy-saving hydrogen production via urea degradation, Journal of Power Sources, 520 (2022) 230882. 40.D. Zhu, C. Guo, J. Liu, L. Wang, Y. Du, S.-Z. Qiao, Two-dimensional metal–organic frameworks with high oxidation states for efficient electrocatalytic urea oxidation, Chemical Communications, 53 (2017) 10906-10909. 41.M. Zhao, W. Li, J. Li, W. Hu, C.M. Li, Strong Electronic Interaction Enhanced Electrocatalysis of Metal Sulfide Clusters Embedded Metal–Organic Framework Ultrathin Nanosheets toward Highly Efficient Overall Water Splitting, Advanced Science, 7 (2020) 2001965. 42.M. Li, H. Sun, J. Yang, M. Humayun, L. Li, X. Xu, X. Xue, A. Habibi-Yangjeh, K. Temst, C. Wang, Mono-coordinated metallocene ligands endow metal-organic frameworks with highly efficient oxygen evolution and urea electrolysis, Chemical Engineering Journal, 430 (2022) 132733.
|