[1]C. R. Gagg, “Premature failure of thread rolling dies: material selection, hardness criteria and case studies,” Engineering Failure Analysis, Vol. 8, pp. 87-105, 2001.
[2]C. L. Hu, T. Ding, H. Ou and Z. Zhao, “Effect of tooling surface on friction conditions in cold forging of an aluminum alloy,” Tribology International, Vol. 131, pp. 353-362, 2019.
[3]Z Gronostajski, M. Kaszuba, S. Polak, M. Zwierzchowski, A. Niechajowicz and M. Hawryluk, “The failure mechanisms of hot forging dies,” Materials Science and Engineering: A, Vol. 657, pp. 147-160, 2016.
[4]M. N. James, D. G. Hattingh, D. Asquith, M. Newby, and P. Doubell, “Applications of Residual Stress in Combatting Fatigue and Fracture,” Procedia Structural Integrity, Vol. 2, pp. 11-25, 2016.
[5]P. Groche, C. MüllerEmail and A. Jahn, “Effects of the Tool Lubrication in Cold Forging,” Tribology Letters, Vol. 53, pp. 599-605, 2014.
[6]S. Jhavar, C. P .Paul and N. K. Jain, “Causes of failure and repairing options for dies and molds: A review,” Engineering Failure Analysis, Vol. 34, pp. 519-535, 2013.
[7]R. Ebara, K. Takeda, Y. Ishibashi, A. Ogura, Y. Kondo and S. Hamaya, “Microfractography in failure analysis of cold forging dies,” Engineering Failure Analysis, Vol. 16, pp. 1968-1976, 2009.
[8]陳昱中,“基於類神經網路之模具狀態線上估測系統”,國立高雄第一科技大學電機工程研究所碩士論文,2018。[9]王君敏,“以微機電麥克風之聲學震動進行精密型沖壓模具失效偵測”,國立中山大學機械與機電工程學系研究所碩士論文,2017。[10]A. Long, D. Thornhill, C. Armstrong and D. Watson, “Predicting die life from die temperature for high pressure dies casting aluminium alloy,” Applied Thermal Engineering, Vol. 44, pp. 100-107, 2012.
[11]L. Zou, J. Xia, X. Wang and G. Hu, “Optimization of die profile for improving die life in the hot extrusion process,” Journal of Materials Processing Technology, Vol. 142, pp. 659-664, 2003.
[12]金昌擎,“冷間鍛造模具失效之研究- 以六角凸緣螺絲為例”,國立高雄應用科技大學機械工程系研究所碩士論文,2018。[13]J. Chen, Y. Xie, K. Wang, Z. H. Wang, G. Lahoti, Z. H. Wang, G. Lahoti, C. Zhang, M. A. Vannan, B. Wang and Z. Qian, “Generative Invertible Networks (GIN): Pathophysiology-Interpretable Feature Mapping and Virtual Patient Generation,” Medical Image Computing and Computer Assisted Intervention- MICCAI, Vol. 14, pp. 537-545, 2018.
[14]L. Zou, J. Xia, X. Wang, and G. Hu, “Optimization of die profile for improving die life in the hot extrusion process,” Journal of Materials Processing Technology, Vol. 142, pp. 659-664, 2003.
[15]https://zh.wikipedia.org/wiki/%E4%BA%BA%E5%B7%A5%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C,類神經網路(Neural Network),維基百科。
[16]https://zh.wikipedia.org/wiki/%E6%BF%80%E6%B4%BB%E5%87%BD%E6%95%B0,激活函數(Activation Function),維基百科。
[17]https://keras.io/zh/initializers/,初始化方法(Initializer),Keras。
[18]https://codertw.com/%E7%A8%8B%E5%BC%8F%E8%AA%9E%E8%A8%80/404042/,損失函數(Loss Function),程式前沿。
[19]https://blog.csdn.net/legalhighhigh/article/details/81409551,損失函數(Loss Function),CSDN。
[20]https://medium.com/%E9%9B%9E%E9%9B%9E%E8%88%87%E5%85%94%E5%85%94%E7%9A%84%E5%B7%A5%E7%A8%8B%E4%B8%96%E7%95%8C/%E6%A9%9F%E5%99%A8%E5%AD%B8%E7%BF%92ml-note-sgd-momentum-adagrad-adam-optimizer-f20568c968db,優化法(Optimizer),Medium。
[21]https://towardsdatascience.com/understanding-rmsprop-faster-neural-network-learning-62e116fcf29a,優化法(Optimizer),Medium。
[22]https://www.geeksforgeeks.org/generative-adversarial-network-gan/,生成對抗網路(GAN),GeeksforGeeks。
[23]https://www.slideshare.net/yenlung/gan-90396897,生成對抗網路(GAN),SlideShare。
[24]https://slidesplayer.com/slide/11334830/,自動編碼器(Autoencoder),SlidesPlayer。
[25]https://www.cnblogs.com/by-dream/p/10088976.html,決策數(Decision Tree),博客園。
[26]http://www.taroballz.com/2018/07/14/ML_decision_tree/,決策數(Decision Tree),Taroballz。
[27]https://www.ccm3s.com/%E6%A8%99%E6%BA%96%E5%8A%A0%E9%95%B7%E5%9E%8B%E8%9E%BA%E7%B5%B2%E6%88%90%E5%9E%8B%E6%A9%9F.html,精湛科技股份有限公司。