Abdul, B., Wei, J., & Kashif, R. (2020). Xylanase and Its Industrial Applications. In B. Thalita Peixoto, B. Thiago Olitta, & B. Luiz Carlos (Eds.), Biotechnological Applications of Biomass. Rijeka: Intech Open.
Adrien, A., Bonnet, A., Dufour, D., Baudouin, S., Maugard, T., & Bridiau, N. (2019). Anticoagulant activity of sulfated ulvan isolated from the green macroalga Ulva rigida. Marine drugs, 17(5), 291.
Almeida, J. R., Modig, T., Petersson, A., Hähn-Hägerdal, B., Lidén, G., & Gorwa-Grauslund, M. F. (2007). Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. 82(4), 340-349.
Andriani, D., Apriyana, A. Y., & Karina, M. (2020). The optimization of bacterial cellulose production and its applications: a review. Cellulose, 27(12), 6747-6766.
Arata, P. X., Quintana, I., Raffo, M. P., & Ciancia, M. (2016). Novel sulfated xylogalactoarabinans from green seaweed Cladophora falklandica: Chemical structure and action on the fibrin network. Carbohydrate Polymers, 154, 139-150.
Barsanti, L., & Gualtieri, P. (2022). Algae: anatomy, biochemistry, and biotechnology: CRC press.
Barud, H. S., Barrios, C., Regiani, T., Marques, R. F., Verelst, M., Dexpert-Ghys, J., Messaddeq, Y. & Ribeiro, S. J. (2008). Self-supported silver nanoparticles containing bacterial cellulose membranes. Materials Science and Engineering, 28(4), 515-518.
Beliah, M., Ibrahim, H., M Farag, A., El-Ahwany, A., & Sabry, S. (2020). Utilization of marine algae as a carbon source for bacterial cellulose production by Gluconacetobacter xylinus. Egyptian Journal of Aquatic Biology and Fisheries, 24(6), 497-518.
Ben Taher, I., Bennour, H., Fickers, P., & Hassouna, M. (2017). Valorization of Potato Peels Residues on Cellulase Production Using a Mixed Culture of Aspergillus niger ATCC 16404 and Trichoderma reesei DSMZ 970. Waste and Biomass Valorization, 8(1), 183-192.
Boyce, S., & Tipton, K. F. (2001). Enzyme classification and nomenclature. e LS.
Brand-Williams, W., Cuvelier, M. E., & Berset, C. L. W. T. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food science and Technology, 28(1), 25-30.
Çakar, F., Özer, I., Aytekin, A. Ö., & Şahin, F. (2014). Improvement production of bacterial cellulose by semicontinuous process in molasses medium. Carbohydrate Polymers, 106, 7-13.
Cao, Y., Lu, S., & Yang, Y. (2018). Production of bacterial cellulose from byproduct of citrus juice processing (citrus pulp) by Gluconacetobacter hansenii. Cellulose, 25, 6977-6988.
Cerrutti, P., Roldán, P., García, R. M., Galvagno, M. A., Vázquez, A., & Foresti, M. L. (2016). Production of bacterial nanocellulose from wine industry residues: Importance of fermentation time on pellicle characteristics. Journal of Applied Polymer Science, 133(14).
Cho, S., & Almeida, N. (2012). Dietary fiber and health. CRC Press.
Cooke, J., Lanfear, R., Downing, A., Gillings, M. R., Poore, A. G., Goodwin, I. D., Waldron, L. S., Phillips, A., Metti. Y. & Bulbert, M. W. (2015). The unusual occurrence of green algal balls of Chaetomorpha linum on a beach in Sydney, Australia. Botanica Marina, 58(5), 401-407.
Dastager, M. N. T. a. S. G. (2018). High yield production of cellulose by a Komagataeibacter rhaeticus PG2 strain isolated from pomegranate as a new host. RSC Adv, 8 (52), 29797-29805.
de Santa Maria, L. C., Santos, A. L., Oliveira, P. C., Barud, H. S., Messaddeq, Y., & Ribeiro, S. J. (2009). Synthesis and characterization of silver nanoparticles impregnated into bacterial cellulose. Materials Letters, 63(9-10), 797-799.
Diaz-Ramirez, J., Urbina, L., Eceiza, A., Retegi, A., & Gabilondo, N. (2021). Superabsorbent bacterial cellulose spheres biosynthesized from winery by-products as natural carriers for fertilizers. International Journal of Biological Macromolecules, 191, 1212-1220.
Dourado, F., Gama, M., & Rodrigues, A. C. (2017). A Review on the toxicology and dietetic role of bacterial cellulose. Toxicology Reports, 4, 543-553.
Edson, F. G., & Poe, C. F. (1948). Determination of reducing sugars in food products. Comparative study of colorimetric methods. Journal of the Association of Official Agricultural Chemists, 31, 769-776.
Fu, X. T., & Kim, S. M. (2010). Agarase: review of major sources, categories, purification method, enzyme characteristics and applications. Marine drugs, 8(1), 200-218.
Güzel, M., & Akpınar, Ö. (2020). Preparation and characterization of bacterial cellulose produced from fruit and vegetable peels by Komagataeibacter hansenii GA2016. International Journal of Biological Macromolecules, 162, 1597-1604.
Güzel, M., & Akpınar, Ö. (2019). Production and characterization of bacterial cellulose from citrus peels. Waste and Biomass Valorization, 10, 2165-2175.
Gao, X., Endo, H., & Agatsuma, Y. (2018). Seasonal changes in photosynthesis, growth, nitrogen accumulation, and salinity tolerance of Chaetomorpha crassa (Cladophorales, Chlorophyceae). Journal of Applied Phycology, 30(3), 1905-1912.
Gayathiri, E., Mahalakshmi, P., Pratheep, T., Prakash, P., Selvam, K., Manivasagaperumal, R., Ragunathan, M.G., Jayanthi, J & Kumaravel, P. . (2022). In silico and in vitro approaches to evaluate the bioactivities of Chaetomorpha linum. South African Journal of Botany, 151, 581-590.
Goh, W. N., Rosma, A., Kaur, B., Fazilah, A., Karim, A. A., & Bhat, R. (2012). Microstructure and physical properties of microbial cellulose produced during fermentation of black tea broth (Kombucha). II. International Food Research Journal, 19(1), 153.
Gorgieva, S., & Trček, J. (2019). Bacterial cellulose: Production, modification and perspectives in biomedical applications. Nanomaterials, 9(10), 1352.
Grande, C. J., Torres, F. G., Gomez, C. M., & Carmen Bañó, M. (2009). Nanocomposites of bacterial cellulose/hydroxyapatite for biomedical applications. Acta Biomaterialia, 5(5), 1605-1615.
Guan, X., & Yao, H. (2008). Optimization of Viscozyme L-assisted extraction of oat bran protein using response surface methodology. Food chemistry, 106(1), 345-351.
Hayakawa, Y., Hayashi, T., Lee, J. B., Srisomporn, P., Maeda, M., Ozawa, T., & Sakuragawa, N. (2000). Inhibition of thrombin by sulfated polysaccharides isolated from green algae. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology, 1543(1), 86-94.
Hestrin, S., & Schramm, M. (1954). Synthesis of cellulose by Acetobacter xylinum. II. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem J, 58(2), 345-352.
Holland, L. Z. (2016). Tunicates. Current Biology, 26(4), R146-R152.
Hsieh, P. C., Huang, G. J., Ho, Y. L., Lin, Y. H., Huang, S. S., Chiang, Y. C., Tseng, M. C. & Chang, Y. S. (2010). Activities of antioxidants, α-Glucosidase inhibitors and aldose reductase inhibitors of the aqueous extracts of four Flemingia species in Taiwan. Bot Stud, 51(293), 302.
Hu, W., Chen, S., Li, X., Shi, S., Shen, W., Zhang, X., & Wang, H. (2009). In situ synthesis of silver chloride nanoparticles into bacterial cellulose membranes. Materials Science Engineering: C, 29(4), 1216-1219.
Huang, X., Zhan, X., Wen, C., Xu, F., & Luo, L. (2018). Amino-functionalized magnetic bacterial cellulose/activated carbon composite for Pb2+ and methyl orange sorption from aqueous solution. Journal of Materials Science, 34(5), 855-863.
Iguchi, M., Yamanaka, S., & Budhiono, A. (2000). Bacterial cellulose—a masterpiece of nature's arts. Journal of Materials Science, 35(2), 261-270.
Jacek, P., Dourado, F., Gama, M., & Bielecki, S. (2019). Molecular aspects of bacterial nanocellulose biosynthesis. Microbial Biotechnology, 12(4), 633-649.
Jipa, I. M., Anicuta Stoica-Guzun, and Marta Stroescu. (2012). Controlled release of sorbic acid from bacterial cellulose based mono and multilayer antimicrobial films. LWT, 47(2), 400-406.
Judd, W. S., Campbell, C. S., Kellogg, E. A., Stevens, P. F., & Donoghue, M. J. (1999). Plant systematics: a phylogenetic approach. Ecología mediterránea, 25(2), 215.
Jung, S., Lee, C.-R., Chi, W.-J., Bae, C.-H., & Hong, S.-K. (2017). Biochemical characterization of a novel cold-adapted GH39 β-agarase, AgaJ9, from an agar-degrading marine bacterium Gayadomonas joobiniege G7. Applied Microbiology and Biotechnology, 101(5), 1965-1974.
Kalasariya, H. S., Patel, N. B., Yadav, A., Perveen, K., Yadav, V. K., Munshi, F. M., Yadav, K. K., Alam, S., Jung, Y. K. & Jeon, B. H. (2021). Characterization of Fatty Acids, Polysaccharides, Amino Acids, and Minerals in Marine Macroalga Chaetomorpha crassa and Evaluation of Their Potentials in Skin Cosmetics. 26(24), 7515.
Khan, H., Kadam, A., & Dutt, D. (2020). Studies on bacterial cellulose produced by a novel strain of Lactobacillus genus. Carbohydrate Polymers, 229, 115513.
Khan, H., Saroha, V., Raghuvanshi, S., Bharti, A. K., & Dutt, D. (2021). Valorization of fruit processing waste to produce high value-added bacterial nanocellulose by a novel strain Komagataeibacter xylinus IITR DKH20. Carbohydrate Polymers, 260, 117807.
Kuo, C.-H., Chen, J.-H., Liou, B.-K., & Lee, C.-K. (2016). Utilization of acetate buffer to improve bacterial cellulose production by Gluconacetobacter xylinus. Food Hydrocolloids, 53, 98-103.
Kuo, C.-H., Huang, Chun-Yung, Shieh, Chwen-Jen, Wang, Hui-Min David, Tseng, Chin-Yin. (2019). Hydrolysis of Orange Peel with Cellulase and Pectinase to Produce Bacterial Cellulose using Gluconacetobacter xylinus. Waste and Biomass Valorization, 10(1), 85-93.
Lin, D., Lopez-Sanchez, P., Li, R., & Li, Z. (2014). Production of bacterial cellulose by Gluconacetobacter hansenii CGMCC 3917 using only waste beer yeast as nutrient source. Bioresource Technology, 151, 113-119.
Lotfy, V. F., Basta, A. H., Abdel-Monem, M. O., & Abdel-Hamed, G. Z. (2021). Utilization of bacteria in rotten Guava for production of bacterial cellulose from isolated and protein waste. Carbohydrate Polymer Technologies and Applications, 2, 100076.
Ludvik, B., Kautzky-Willer, A., Prager, R., Thomaseth, K., & Pacini, G. (1997). Amylin: history and overview. Diabet Med, 14 Suppl 2, S9-13.
Lv, X., Han, J., Liu, M., Yu, H., Liu, K., Yang, Y., Sun, Y., Pan, P., Liang, Z., Chang, L., & Chen, J. (2023). Overview of preparation, modification, and application of tunicate-derived nanocellulose. Chemical Engineering Journal, 452, 139439.
MacAdam, D. L. (1975). Uniform color scales. JOSA, 64(12), 1691-1702.
Manian, R., Anusuya, N., Siddhuraju, P., & Manian, S. (2008). The antioxidant activity and free radical scavenging potential of two different solvent extracts of Camellia sinensis (L.) O. Kuntz, Ficus bengalensis L. and Ficus racemosa L. Food chemistry, 107(3), 1000-1007.
Marsh, A. J., O'Sullivan, O., Hill, C., Ross, R. P., & Cotter, P. D. (2014). Sequence-based analysis of the bacterial and fungal compositions of multiple kombucha (tea fungus) samples. Food Microbiology, 38, 171-178.
Matsubara, K., Matsuura, Y., Bacic, A., Liao, M. L., Hori, K., & Miyazawa, K. (2001). Anticoagulant properties of a sulfated galactan preparation from a marine green alga, Codium cylindricum. International Journal of Biological Macromolecules, 28(5), 395-399.
Menéndez, M., Jorge A. Herrera Silveira, and Francisco A. Comín. (2002). Effect of nitrogen and phosphorus supply on growth, chlorophyll content and tissue composition of the macroalga Chaetomorpha linum (OF Mull), Kutz, in a Mediterranean Coastal Lagoon. Scientia Marina, 66, 355-364
Mittal, R., & Raghavarao, K. S. M. S. (2018). Extraction of R-Phycoerythrin from marine macro-algae, Gelidium pusillum, employing consortia of enzymes. Algal Research, 34, 1-11.
Mohammadkazemi, F., Mehrdad Azin, and Alireza Ashori. (2015). Production of bacterial cellulose using different carbon sources and culture media. Carbohydrate Polymers, 117, 518-523.
Molyneux, P. (2004). The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. J. sci. technol, 26(2), 211-219.
Moniri, M., Boroumand Moghaddam, A., Azizi, S., Abdul Rahim, R., Bin Ariff, A., Zuhainis Saad, W., Navaderi, M. & Mohamad, R. (2017). Production and status of bacterial cellulose in biomedical engineering. Nanomaterials, 7(9), 257.
Murali, S., & Govindan, V. K. (2013). Shadow detection and removal from a single image using LAB color space. Cybern. Inf. Technol, 13(1), 95-103.
Na Li, X. L., Xiaoxi He, Shuyao Wang, Sujian Cao, Zheng Xia, Huali Xian, Ling Qin, Wenjun Mao. (2017). Structure and anticoagulant property of a sulfated polysaccharide isolated from the green seaweed Monostroma angicava. Carbohydrate Polymers, 159, 195-206.
Nalini, S., Sandy Richard, D., Mohammed Riyaz, S. U., Kavitha, G., & Inbakandan, D. (2018). Antibacterial macro molecules from marine organisms. International Journal of Biological Macromolecules, 115, 696-710.
Ogrizek, L., Lamovšek, J., Čuš, F., Leskovšek, M., & Gorjanc, M. (2021). Properties of Bacterial Cellulose Produced Using White and Red Grape Bagasse as a Nutrient Source. 9(7), 1088.
Picheth, G. F., Pirich, C. L., Sierakowski, M. R., Woehl, M. A., Sakakibara, C. N., de Souza, C. F., Martin, A. A., da Silva, R., & de Freitas, R. A. (2017). Bacterial cellulose in biomedical applications: A review. International Journal of Biological Macromolecules, 104, 97-106.
Prade, R. A. (1996). Xylanases: from biology to biotechnology. Biotechnology and Genetic Engineering Reviews, 13(1), 101-132.
Qiu, X., Zhang, Y., & Hong, H. (2021). Classification of acetic acid bacteria and their acid resistant mechanism. AMB Express, 11(1), 29.
Ramkissoon, A., Ramsubhag, A., Maxwell, A., & Jayaraman, J. (2015). In vitro antimicrobial activity of common species of seaweeds native to Trinidadian coasts. Algological Studies, 45-66.
Ramos, O. S., & Malcata, F. X. (2011). 3.48 - Food-Grade Enzymes. In M. Moo-Young (Ed.), Comprehensive Biotechnology (Second Edition) (pp. 555-569). Burlington: Academic Press.
Rani, M. U., & Appaiah, A. (2011). Optimization of culture conditions for bacterial cellulose production from Gluconacetobacter hansenii UAC09. Annals of Microbiology, 61(4), 781-787.
Reiniati, I., Hrymak, A. N., & Margaritis, A. (2017). Kinetics of cell growth and crystalline nanocellulose production by Komagataeibacter xylinus. Biochemical Engineering Journal, 127, 21-31.
Ruka, D. R., Simon, G. P., & Dean, K. M. (2012). Altering the growth conditions of Gluconacetobacter xylinus to maximize the yield of bacterial cellulose. Carbohydrate Polymers, 89(2), 613-622.
Schmidt, E. W., & Donia, M. S. (2010). Life in cellulose houses: symbiotic bacterial biosynthesis of ascidian drugs and drug leads. Current Opinion in Biotechnology, 21(6), 827-833.
Seddiqi, H., Oliaei, E., Honarkar, H., Jin, J., Geonzon, L. C., Bacabac, R. G., & Klein-Nulend, J. (2021). Cellulose and its derivatives: towards biomedical applications. Cellulose, 28(4), 1893-1931.
Segal, L., Creely, J. J., Martin, A. E., & Conrad, C. M. (1959). An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer. Textile Research Journal, 29(10), 786-794.
Shah, N., Ul-Islam, M., Khattak, W. A., & Park, J. K. (2013). Overview of bacterial cellulose composites: a multipurpose advanced material. Carbohydrate Polymers, 98(2), 1585-1598.
Shevchenko, N. M., Burtseva, Y. V., Zvyagintseva, T. N., Makar′ Eva, T. N., Sergeeva, O. S., Zakharenko, A. M., Isakov, V. V., Thi Linh N., Xuan Hoa N., Bui Minh Ly & Van Huyen, P. (2009). Polysaccharides and sterols from green algae Caulerpa lentillifera and C. sertularioides. Chemistry of Natural Compounds, 45, 1-5.
Shi, Z., Zhang, Y., Phillips, G. O., & Yang, G. (2014). Utilization of bacterial cellulose in food. Food Hydrocolloids, 35, 539-545.
Shoukat, A., Wahid, F., Khan, T., Siddique, M., Nasreen, S., Yang, G., Ullah, M. W., & Khan, R. (2019). Titanium oxide-bacterial cellulose bioadsorbent for the removal of lead ions from aqueous solution. International Journal of Biological Macromolecules, 129, 965-971.
Sievers, M., Sellmer, S., & Teuber, M. (1992). Acetobacter europaeus sp. nov., a Main Component of Industrial Vinegar Fermenters in Central Europe. Systematic and Applied Microbiology, 15(3), 386-392.
Silva, A., Silva, S. A., Lourenço-Lopes, C., Jimenez-Lopez, C., Carpena, M., Gullón, P., Fraga-Corral, M., Domingues, V. F., Barroso, M. F., Simal-Gandara, J., & Prieto, M. A. (2020). Antibacterial Use of Macroalgae Compounds against Foodborne Pathogens. 9(10), 712.
Singh, R., Kumar, R., Bishnoi, K., & Bishnoi, N. R. (2009). Optimization of synergistic parameters for thermostable cellulase activity of Aspergillus heteromorphus using response surface methodology. Biochemical Engineering Journal, 48(1), 28-35.
Singhania, R. R., Patel, A. K., Tseng, Y. S., Kumar, V., Chen, C. W., Haldar, D., Saini, J. K., Dong, C. D. (2022). Developments in bioprocess for bacterial cellulose production. Bioresource Technology, 344, 126343.
Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. American journal of Enology and Viticulture, 16(3), 144-158.
Souza, E. F., Furtado, M. R., Carvalho, C. W. P., Freitas-Silva, O., & Gottschalk, L. M. F. (2020). Production and characterization of Gluconacetobacter xylinus bacterial cellulose using cashew apple juice and soybean molasses. International Journal of Biological Macromolecules, 146, 285-289.
Taherzadeh, M. J., and Keikhosro Karimi. (2007). Acid-based hydrolysis processes for ethanol from lignocellulosic materials: A review. BioResources, 2(3), 472-499.
Tseng, Y. S., Patel, A. K., Chen, C.-W., Dong, C.-D., & Singhania, R. R. (2023). Improved production of bacterial cellulose by Komagataeibacter europaeus employing fruit extract as carbon source. Journal of Food Science and Technology, 60(3), 1054-1064.
Urbina, L., Hernández-Arriaga, A. M., Eceiza, A., Gabilondo, N., Corcuera, M. A., Prieto, M. A., & Retegi, A. (2017). By-products of the cider production: an alternative source of nutrients to produce bacterial cellulose. Cellulose, 24(5), 2071-2082.
Wang, T., Jónsdóttir, R., Kristinsson, H. G., Hreggvidsson, G. O., Jónsson, J. Ó., Thorkelsson, G., & Ólafsdóttir, G. (2010). Enzyme-enhanced extraction of antioxidant ingredients from red algae Palmaria palmata. LWT - Food Science and Technology, 43(9), 1387-1393.
Xie, W., You, Y., Ban, X., Zhang, A., Li, C., Gu, Z., & Li, Z. (2023). Structural basis for the cold activation and adaptation of an α-agarase from marine bacterium Catenovulum agarivorans STB13. Food Bioscience, 53, 102630.
Yang, Z., Ren, L., Jin, L., Huang, L., He, Y., Tang, J., Yang, W., & Wang, H. (2018). In-situ functionalization of poly (m-phenylenediamine) nanoparticles on bacterial cellulose for chromium removal. Chemical Engineering Journal, 344, 441-452.
Zu, S., Li, W.-z., Zhang, M., Li, Z., Wang, Z., Jameel, H., & Chang, H.-m. (2014). Pretreatment of corn stover for sugar production using dilute hydrochloric acid followed by lime. Bioresource Technology, 152, 364-370.
宋俊良(2012)。農產廢棄物於細菌纖維素生產之利用。碩士論文,中國文化大學生物科技研究所,台北市。范林林, 車美玲, 邵鋒, 黄雪雪, & 許波(2015)。黄海養殖真海鞘營養成分分析與評價。食品科學, 36(24),頁 181-185。
蔡亦寯(2019)。以高粱酒糟水萃液為主要基質靜置培養醋酸菌Komagataeibacter rhaeticus NCHU R-1之細菌纖維素增長模式及其在固定化益生菌之應用。碩士論文,國立中興大學食品暨應用生物科技學系所,台中市。蘇室維(2013)。台灣海域海鞘多樣性研究。博士論文,國立中山大學海洋生物科技暨資源學系研究所,高雄市。