Apostolidis-Afentoulis, V., & Lioufi, K.-I. (2015). SVM classification with linear and RBF kernels. July): 0-7. http://www. academia. edu/13811676/SVM Classification with Linear and RBF kernels.
Battineni, G., Chintalapudi, N., & Amenta, F. (2019). Machine learning in medicine: Performance calculation of dementia prediction by support vector machines (SVM). Informatics in Medicine Unlocked, 16, 100200.
Bedre, R. (2021). Support Vector Machine (SVM) in Python. https://www.reneshbedre.com/blog/support-vector-machine.html#google_vignette
Bisenius, S., Mueller, K., Diehl-Schmid, J., Fassbender, K., Grimmer, T., Jessen, F., Kassubek, J., Kornhuber, J., Landwehrmeyer, B., & Ludolph, A. (2017). Predicting primary progressive aphasias with support vector machine approaches in structural MRI data. NeuroImage: Clinical, 14, 334-343.
Bron, E. E., Smits, M., Niessen, W. J., & Klein, S. (2015). Feature selection based on the SVM weight vector for classification of dementia. IEEE journal of biomedical and health informatics, 19(5), 1617-1626.
Cohen, M. C. (2018). Big data and service operations. Production and Operations Management, 27(9), 1709-1723.
Flach, P. (2012). Machine learning: the art and science of algorithms that make sense of data. Cambridge university press.
Habehh, H., & Gohel, S. (2021). Machine learning in healthcare. Current genomics, 22(4), 291.
Hu, E. (2024). 支援向量機(Support Vector Machine). https://medium.com/@elvennote/%E6%94%AF%E6%8F%B4%E5%90%91%E9%87%8F%E6%A9%9F-support-vector-machine-796cb18886eb
Huang, S., Cai, N., Pacheco, P. P., Narrandes, S., Wang, Y., & Xu, W. (2018). Applications of support vector machine (SVM) learning in cancer genomics. Cancer genomics & proteomics, 15(1), 41-51.
Iddo. (2014). Support Vector Machines explained well. http://bytesizebio.net/2014/02/05/support-vector-machines-explained-well/
Levman, J., Leung, T., Causer, P., Plewes, D., & Martel, A. L. (2008). Classification of dynamic contrast-enhanced magnetic resonance breast lesions by support vector machines. IEEE Transactions on Medical Imaging, 27(5), 688-696.
Lin, K.-N., & Liu, H.-C. (2003). Clinical dementia rating (CDR), Chinese version. Acta Neurologica Taiwanica, 12(3), 154-165.
Mahesh, B. (2020). Machine learning algorithms-a review. International Journal of Science and Research (IJSR).[Internet], 9(1), 381-386.
Marcus, D. S., Fotenos, A. F., Csernansky, J. G., Morris, J. C., & Buckner, R. L. (2010). Open access series of imaging studies: longitudinal MRI data in nondemented and demented older adults. Journal of cognitive neuroscience, 22(12), 2677-2684.
noobStudent. (2021). Day 21 支援向量機 SVM. https://ithelp.ithome.com.tw/articles/10278350
Patel, S. (2017). Chapter 2: SVM (support vector machine)—theory. Machine learning, 101(3), 20. https://medium.com/machine-learning-101/chapter-2-svm-support-vector-machine-theory-f0812effc72
Puri, H., Chaudhary, J., Raghavendra, K. R., Mantri, R., & Bingi, K. (2021). Prediction of heart stroke using support vector machine algorithm. 2021 8th International conference on smart computing and communications (ICSCC),
Singh, N., Singh, P., & Bhagat, D. (2019). A rule extraction approach from support vector machines for diagnosing hypertension among diabetics. Expert Systems with Applications, 130, 188-205.
Sørensen, L., Nielsen, M., & Initiative, A. s. D. N. (2018). Ensemble support vector machine classification of dementia using structural MRI and mini-mental state examination. Journal of neuroscience methods, 302, 66-74.
Teipel, S. J., Meindl, T., Grinberg, L., Heinsen, H., & Hampel, H. (2008). Novel MRI techniques in the assessment of dementia. European journal of nuclear medicine and molecular imaging, 35, 58-69.
Yu, H., & Kim, S. (2012). SVM Tutorial-Classification, Regression and Ranking. Handbook of Natural computing, 1, 479-506.
徐睿朋. (2022). 應用機器學習演算法於失智症量表數據以預測失智症 東海大學]. 臺灣博碩士論文知識加值系統. 台中市. https://hdl.handle.net/11296/7455f5廖益聖. (2023). 應用機器學習演算法於失智等級之預測 亞洲大學]. 臺灣博碩士論文知識加值系統. 台中市. https://hdl.handle.net/11296/en8645劉亭妤. (2023). 基於機器學習技術以失智症量表及檢驗資料建立失智症惡化預測模式 輔仁大學]. 臺灣博碩士論文知識加值系統. 新北市. https://hdl.handle.net/11296/xcq495