[1]Tsung-Heng Tsai, Yu-Chi Cao, 2017, “The Integration of the Capacitive and Resistive Sensors with the Readout Circuit Systems”, 科儀新知 212 期, pp. 26, September.
[2]Gibson Chimamiwa, Marjan Alirezaie, Federico Pecora, AmyLoutf, 2020, “Multi-sensor dataset of human activities in a smart home environment”, Data in Brief, 9 December.
[3]Peng Zhang, Hong Hu, Fayyaz Muhammad, YulinLei, 2017, “High frequency passive micro-magnetic sensor based on surface acoustic wave transponder and giant magnetoimpedance sensitive element”, Sensors and Actuators A: Physical, 254, pp. 54-60, 1 February
[4] Manuel S.Brugger,Lukas G.Schnitzler,Timo Nieberle,Achim Wixforth,Christoph Westerhausen, 2021, “Shear-horizontal surface acoustic wave sensor for non-invasive monitoring of dynamic cell spreading and attachment in wound healing assays”, Biosensors and Bioelectronics, 173, 1 February.
[5]I. Y. Huang and M. C. Lee, 2008, “Development of a FPW allergy biosensor for hμman IgE detection by MEMS and cystamine-based SAM technologies”, Sensors Actuators B: Chem., 132, pp. 340-348.
[6]Dong HaoZhuo, Ashish Rai, Siamack Vosoogh-Graylia, Gary W.Leachb, Behraad Bahreynia, 2020, “A micromachined vector light sensor”, Sensors and Actuators A: Physical, 311, 15 August.
[7]Peng Wang, Tao Dong, Changchao Jia, Ping Yang, 2019, “Ultraselective acetone-gas sensor based ZnO flowers functionalized by Au nanoparticle loading on certain facet”, Sensors and Actuators B: Chemical, 288, pp. 1-11, 1 June.
[8] Qin peng Liu, Xue He, Haiwei Fu, DexingYang, Fajun Xiao,Xiangyu Wang, 2020, “Temperature-insensitive optical fiber reflective micro-liquid level sensor base on the drop shape quasi-Mach Zehnder interferometer”, Optik, 216, August.
[9] T.Malini, R.Sudha, P.Anantha Christu Raj, B.Stalin, 2020, “The role of RTD and liquid sensors in electric arc furnace for melting of aluminium”, Materialstoday: Proceedings, 33, Part 7, pp. 4793-4796.
[10] Qiang Zou, Shihao Li , Tao Xue, Zhuomin Ma, Zhiming Lei, Qi Su, 2020, “Highly sensitive ionic pressure sensor with broad sensing range based on interlaced ridge-like microstructure”, Sensors and Actuators A: Physical, 313, 1 October.
[11] Olamikunle Osinimu Ogunleye, Heisuke Sakai, Yuya Ishii , Hideyuki Murata, 2019, “Investigation of the sensing mechanism of dual-gate low-voltage organic transistor based pressure sensor”, Organic Electronics, 75, December.
[12] L. Salgado-Conrado, 2018, “A review on sun position sensors used in solar applications”, Renew. Sustain. Energy Rev, 82, pp. 2128-2146, February.
[13]A. Venema, E. Nieuwkoop, M. J. Vellekoop, M. S. Nieuwenhuizen and A. W. Barendsz, 1986, “Design aspects of SAW gas sensors”, Sensors and Actuators, 10, pp. 47-64.
[14]A. Mauder, 1995, “SAW gas sensors: Comparison between delay line and two port
Resonator”, Sensors Actuators B: Chem, 26, pp. 187-190.
[15]V. Hinrichsen, G. Scholl, M. Schubert and T. Ostertag, 1999, “Online monitoring of high-voltage metal-oxide surge arresters by wireless passive surface acoustic wave (SAW) temperature sensors”, Eleventh International Symposium, 2, pp. 238-241.
[16]L. Reindl, I. Shrena, S. Kenshil and R. Peter, 2003, “Wireless measurement of temperature using surface acoustic waves sensors”, IEEE International Frequency Control Symposium and PDA Exhibition Jointly with the 17th European Frequency and Time Forum, pp. 935-941.
[17]Xifang Li, Zhuang Zhuang, Duo Qi, Chengji Zhao, 2020, “High sensitive and fast response humidity sensor based on polymer composite nanofibers for breath monitoring and non-contact sensing”, Sensors and Actuators B: Chemical, 22 November.
[18] M.V.Arularasu,M.Harb, R.Vignesh, T.V. Rajendran, R. Sundaram, 2020, “PVDF/ZnO hybrid nanocomposite applied as a resistive humidity sensor”, Surfaces and Interfaces, 21, December.
[19]Ahmed Mishaal Mohammed , Ibraheem Jaleel Ibraheem, A.S.Obaid M.Bououdina, 2017, “Nanostructured ZnO-based biosensor: DNA immobilization and hybridization”, Sensing and Bio-Sensing Research, 15, pp. 46-52, September.
[20]L. Lamanna, F. Rizzi , VR. Bhethanabotla, M. De Vittorio, 2020, “Conformable surface acoustic wave biosensor for E-coli fabricated on PEN plastic film”, BIOSENSORS & BIOELECTRONICS, 163, 1 September.
[21]T. Shiosaki, T. Yamamoto, T. Oda and A. Kawabata, 1980, “Low‐temperature growth of piezoelectric AlN film by rf reactive planar magnetron sputtering”, Applied Physics Letters, 36, pp. 643.
[22]Colin Campbell, 1989, “Surface Acoustic Wave Devices and Their Signal Processing Applications”, pp.1-7.
[23] Ziming Cai, Peizhong Feng, Chaoqiong Zhu, Xiaohui Wang, 2020, “Dielectric breakdown behavior of ferroelectric ceramics: the role of pores”, Journal of the European Ceramic Society, 10 December.
[24] Geoff E.Fair, Ronald J.Kerans, Triplicane A.Parthasarathy, 2008, “Thermal history sensor based on glass-ceramics”, Sensors and Actuators A: Physical, 141, pp. 245-255, 15 February.
[25] Sirlon F. Blaskievicz, Lucia Helena Mascaro, Yuanzhu Zhao, Frank Marken, 2020, “Semiconductor Photoelectroanalysis and Photobioelectroanalysis: A Perspective”, TrAC Trends in Analytical Chemistry, 17 December.
[26]D.A.Mirabella, C.Buono, C.M.Aldao, D.E.Resasco, 2019, “Chemisorption and sensitivity at semiconductor sensors revisited”, Sensors and Actuators B: Chemical, 285, pp. 232-239, 15 April.
[27]Yong Zhao, Xu-guang Hu, Sheng Hu, Yun Peng, 2020, “Applications of fiber-optic biochemical sensor in microfluidic chips: A review”, Biosensors and Bioelectronics, 166, 15 October.
[28]Yingxuan Liu, Xuegang Li, Ya-nan Zhang, YongZhao, 2021, “Fiber-optic sensors based on Vernier effect”, Measurement, 167, 1 January.
[29]苟永明, 1998, “聲表面波傳感器原理及應用”, Sensor world, 10期
[30]A.J. Slobodnik, 1979, “Miniature surface-acoustic-wave filters”, Proceedings of the IEEE, 67.
[31]Thomas E. Parker, Gary K. Montress, 1988, “Precision Surface-Acoustic-Wave (SAW) Oscillators”, IEEE Transactions on ultrasonics. Ferroelectrics and frequency control, 35, May.
[32]S.J. Pearton, D.P. Norton, K. Ip, Y.W. Heo, T. Steiner, 2005, “Recent progress in processing and properties of ZnO”, Prog. Mater. Sci, 50, pp. 293-340.
[33]M.C. Jeong, B.Y. Oh, W. Lee, J.M. Myoung, 2005, “Optoelectronic properties of three-dimensional ZnO hybrid structure”, Appl. Phys. Lett, 86, pp. 103-105.
[34]E. Arakelova, A. Khachatryan, K. Avjyan, Z. Farmazyan, A. Mirzoyan, L. Savchenko, S. Ghazaryan, F. Arsenyan, 2010, “Zinc oxide nanocomposites with antitumor activity”, Natural Science, 2, pp. 1341-1348.
[35]C. Jagadish, S.J. Pearton (Eds.), 2006, “ZnO Bulk, Thin Films and Nanostructures”, Elsevier, Oxford, UK.
[36]P. Rodnyi, I. Khodyuk, 2011, “Optical and lμminescence properties of zinc oxide (Review) Optic Spectrosc”, 111, 5, pp. 776-785.
[37]B.P. Zhang, N.T. Binh, Y. Segawa, K. Wakatsuki, N. Usami, 2003, “Optical properties of ZnO rods formed by metalorganic chemical vapor deposition”, Appl. Phys. Lett., 83, pp. 1635-1637.
[38]Olivér Hortay, Attila A.Víg, 2020, “Potential effects of market power in Hungarian solar boom”, Energy, 213, 15 December.
[39]Igor Sherstov, Lyana Chetvergova, 2020, “Experimental researches of acoustical modes of various types of resonant photo-acoustic detectors”, Optics Communications, 462, 1 May.
[40]Qi Zhu , Liang Zhou, Ruixia Wu, Zhenzhen Li, Rongzhen Cui , Xuesen Zhao, Qingduo Duanmu, 2021, “High efficiency white organic light-emitting diodes with co-doped iridium complexes as blue and yellow emitters”, Synthetic Metals, 272, February.
[41]Hejun Li, Ning Xie, Jiaxuan Wang, Yuguang Zhao, Baoyan Liang, 2021, “Highly efficient full-fluorescence organic light-emitting diodes with exciplex cohosts”, Organic Electronics, 88, January.
[42]J. Curie, P. Curie, 1880, “Développement par compression de l'électricité polaire dans les cristaux hémièdres à faces inclines”, Comptes Rendus de l’Académie des Sciences, pp. 91-294.
[43]P. Curie, J. Curie, Comput. Rend, 1880, Acad. Sci Paris 91, pp. 294-297.
[44]吳朗, 1994, “電子陶瓷-壓電陶瓷”, 全欣資訊圖書, 頁7。
[45]周芳國,2015,“高功率超音波換能器之材料設計與實驗分析”,中華大學碩士論文。[46]蔡政憲,2011,“PVDF電紡壓電纖維織指叉狀電極能量擷取器設計製作”,國立中山大學機械與機電工程學系碩士論文。[47]L. Rayleigh, 1885, “On Waves Propagated along Plane Surface of an Elastic Solid” Proceedings of the London Mathematical Society, 17, 3, pp. 4-11.
[48]R.M. White, and F.W. Voltmer, 1965,Appl. Phys. Lett. 17, pp. 314.
[49]C. K. Campbell, 1997, “Surface Acoustic Wave Devices for Mobile and Wireless Communications”, John Wiley & Sons.
[50]María-Isabel Rocha-Gaso, Carmen March-Iborra, Ángel Montoya-Baides, Antonio Arnau-Vives, 2009, “Surface Generated Acoustic Wave Biosensors for the Detection of Pathogens: A Review”, sensors, pp. 5740-5769.
[51]D. S. Ballantine, R. M. White, 1997, “Acoustic Wave Sensors-Theory, Design and Physico-Chemical Applications”, Academic Press, New York.
[52]鐘建川, 2003, “IDT結構表面聲波元件之探討”,國立成功大學電機工程研究所碩士論文。
[53]M. F. Lewis, 1982, “SAW filters employing interdigitated interdigital transducers, IIDT”, IEEE Ultrasonics Symp. Proc., pp. 12-17.
[54]沈靜怡, 2012, “Sezawa模態表面聲波共振器應用於人類免疫球蛋白E感測器之研究”,國立中山大學電機工程學系碩士論文。[55]廖昌盛, 2007, “高頻寬頻表面聲波濾波器之研究”, 國立交通大學電子工程學系碩士論文。[56]Hafez A . Radi, John O Rasmussen, 2012, “Principles of Physics: For Scientists and Engineers”, Springer Science & Business Media.
[57]ThuHang Bui, Bruno Morana, Tom Scholtes1, Trinh Chu Duc, Pasqualina M. Sarro, 2016, “A mixing surface acoustic wave device for liquid sensing applications: Design, simulation, and analysis”, J. Appl. Phys., 120.
[58]D.S.Ballantine, R.M. White, 1997, “Acoustic Wave Sensors—Theory, Design and Physico-chemical Applications”, Academic Press, New York.
[59]C. Campbell, 1989, “Surface acoustic wave devices dor mobile and wireless communications”, Academic Press, pp. 108-113.
[60]J. W. Gardner, V. K. Varadan, O. O. Awadelkarim, 2001, “Microsensors MEMS and Smart Devices”, Willy, pp. 303-316.
[61]Smith, W.R., Gerard, H.M., Reeder, T.M., Shaw, H.J., Collins, J.H., 1969, “Analysis of Interdigital Surface Wave Transducers by use of an Equivalent Circuit Model”, IEEE Transactions on Microwave Theory and Techniques, 17, pp. 856-864, November.
[62]K.-Y. Hashimoto, M. Kadota, T. Nakao, M. Ueda, M. Miura, H. Nakamura, H. Nakanishi, and K. Suzuki, 2011, “Recent development of temperature compensated SAW Devices”, Proc. IEEE Int. Ultrason. Symp., pp. 79–86, October.
[63]Hua-Feng Pang,Yong-Qing Fu,Zhi-JieLi,Yifan Li,Jin-Yi Ma,FrankPlacido,Anthony J.Walton,Xiao-TaoZu, 2013, “Love mode surface acoustic wave ultraviolet sensor using ZnO films deposited on 36° Y-cut LiTaO3”, Sensors and Actuators A: Physical
193, Pages 87-94
[64]David A.Powell, Kourosh Kalantar-zadeh, Wojtek Wlodarski, 2007, “Spatial Sensitivity Distribution of Surface Acoustic Wave Resonator Sensors”, IEEE Sensors Journal
[65]Cinzia Caliendo, Farouk Laidoudi, 2020, “Experimental and Theoretical Study of Multifrequency Surface Acoustic Wave Devices in a Single Si/SiO2/ZnO Piezoelectric Structure” Sensors (Basel). 20(5): 1380.
[66]Z. L. Wang, 2004, “Zinc oxide nanostructures: growth, properties and applications”, Journal of Physics: Condensed Matter, 16.
[67]王志明, “鍍膜技術實務” ,正修科技大學校電機系。
[68]Dennes T.Bergado, Salisa Chaiyaput, Suthasinee Artidteang, Trong Nghia Nguyen, 2020, ” Microstructures within and outside the smear zones for soft clay improvement using PVD only, Vacuum-PVD, Thermo-PVD and Thermo-Vacuum-PVD”, Geotextiles and Geomembranes, 48, pp. 828-843, December.
[69]M. Zarka, B. Dikici, M. Niinomi, K.V. Ezirmik, M. Nakaif, H. Yilmazer, 2021, “A systematic study of β-type Ti-based PVD coatings on magnesium for biomedical application”, Vacuum, 183, January.
[70]Vijay M.Shinde, Prashun Pradeep, 2021, “Detailed gas-phase kinetics and reduced reaction mechanism for methane pyrolysis involved in CVD/CVI processes”, Journal of Analytical and Applied Pyrolysis, 154, March.
[71]Xiaotian Shen, Chengchuan Wang, Fanghong Sun, 2018, “The effects of deposition parameters on the grain morphology and wear mechanism of monolayer diamond grinding tools fabricated by hot filament CVD method”, Diamond and Related Materials , 89, pp. 312-321, October.
[72]M. Masłyk, M.A. Borysiewicz, M. Wzorek, T. Wojciechowski, M. Kwoka, E. Kamińska, 2016, “Influence of absolute argon and oxygen flow values at a constant ratio on the growth of Zn/ZnO nanostructures obtained by DC reactive magnetron sputtering”, Applied Surface Science, 389, pp. 287-293.
[73]K. Cicek, T. Karacali, H. Efeoglu, B. Cakmak, 2017, “Deposition of ZnO thin films by RF&DC magnetron sputtering on silicon and porous-silicon substrates for pyroelectric applications”, Sensors and Actuators A: Physical, 260, pp. 24-28.
[74]何駿佑,2017, “Bi0.5Sb1.5Te3+0.33 wt% aerogel與 Cu0.02Bi2Te2.7Se0.3熱電薄膜與元件之熱電性質研究”, 國立政治大學物理研究所碩士論文。[75]R.S.Gonçalves, Petrucio Barrozo, G.L.Brito, B.C.Viana, F.Cunha, 2018 “The effect of thickness on optical, structural and growth mechanism of ZnO thin film prepared by magnetron sputtering”, Thin Solid Films, 661, pp. 40-45, 1 September.
[76]L. J. Vossen, W.Kerm, 1999, “Thin Film Process”, Academic Process, pp 134.
[77]范筱緣, 2017, “氧化鋅與二氧化鈦複合薄膜應用於表面聲波型光觸媒元件”, 國立虎尾科技大學電子工程系碩士論文。[78]陳昊仁, 陳品勳, 2013, “不同熱退火溫度與氫電漿處理時間對於氧化銦錫薄膜之研究”, 國立雲林科技大學電子工程系實務專題。