|
[1] Davide Chicco. Siamese neural networks: An overview. Artificial Neural Networks, 2190:73–94, 2021. [2] L. Bertinetto, J. Valmadre, J. F. Henriques, A. Vedaldi, and P. H. Torr. Fully-convolutional siamese networks for object tracking. In European conference on computer vision, pages 850–865. Springer, 2016. [3] Bo Li, Junjie Yan, Wei Wu, Zheng Zhu, and Xiaolin Hu. High performance visual tracking with siamese region proposal network. In CVPR, 2018. [4] Z. Tang, T. Xu, and X.-J. Wu, “A survey for deep RGBT tracking,” arXiv cs.CV 2201.09296 (2022). [5] H. Nam and B. Han, “Learning multi-domain convolutional neural networks for visual tracking,” in Proc. IEEE CVPR, 2016, pp. 4293–4302. [6] L. Zhang, M. Danelljan, A. Gonzalez-Garcia, J. van de Weijer, and F. S. Khan. Multi-modal fusion for end-to-end rgb-t tracking. In IEEE International Conference on Computer Vision, ICCV Workshops, 2019. [7] Goutam Bhat, Martin Danelljan, Luc Van Gool, and Radu Timofte. Learning discriminative model prediction for tracking. In ICCV, 2019. [8] C. Li, H. Cheng, S. Hu, X. Liu, J. Tang, L. Lin, Learning collaborative sparse representation for grayscale-thermal tracking, IEEE Transactions on Image Processing 25 (2016) 5743–5756. [9] Chenglong Li, Xinyan Liang, Yijuan Lu, Nan Zhao, and Jin Tang. RGB-T object tracking: benchmark and baseline. Pattern Recognition, 96:106977, 2019. [10] C. Li, W. Xue, Y. Jia, Z. Qu, B. Luo, J. Tang, D. Sun, Lasher: A large-scale high-diversity benchmark for RGBT tracking, IEEE Transactions on Image Processing 31 (2022) 392–404. [11] N. Jiang, K. Wang, X. Peng, X. Yu, Q. Wang, J. Xing, G. Li, J. Zhao, G. Guo, and Z. Han, “Anti-uav: A large multi-modal benchmark for UAV tracking,” CoRR, vol. abs/2101.08466, 2021. [12] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In CVPR, 2018. [13] Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In So Kweon. Cbam: Convolutional block attention module. In Proceedings of the European conference on computer vision (ECCV), pages 3–19, 2018. [14] Zhi Tian, Chunhua Shen, Hao Chen, and Tong He. FCOS: Fully convolutional one-stage object detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pages 9627–9636, 2019. [15] Dongyan Guo, Jun Wang, Ying Cui, Zhenhua Wang, and Shengyong Chen. SiamCAR: Siamese fully convolutional classification and regression for visual tracking. In CVPR, 2020. [16] Lianghua Huang, Xin Zhao, and Kaiqi Huang. GOT-10k: A Large High-Diversity Benchmark for Generic Object Tracking in the Wild. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(5):1562–1577, May 2021. [17] B. Babenko, M.-H. Yang, and S. Belongie, “Robust object tracking with online multiple instance learning,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 8, pp. 1619–1632, Aug. 2011. [18] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista, “High-speed tracking with kernelized correlation filters,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 37, no. 3, pp. 583–596, Mar. 2015. [19] Y. Wu, J. Lim, and M.-H. Yang, “Online object tracking: A benchmark,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 2013, pp. 2411–2418 . [20] Chenglong Li, Andong Lu, Aihua Zheng, Zhengzheng Tu, and Jin Tang. Multi-adapter RGBT tracking. In IEEE International Conference on Computer Vision Workshop, pages 2262–2270, 2019. [21] Tianlu Zhang, Xueru Liu, Qiang Zhang, and Jungong Han. SiamCDA: Complementarity- and distractor-aware RGB-T tracking based on siamese network. IEEE Transactions on Circuits and Systems for Video Technology, 99:1–16, 2021. [22] Bo Li, Wei Wu, Qiang Wang, Fangyi Zhang, Junliang Xing, and Junjie Yan. SiamRPN++: Evolution of siamese visual tracking with very deep networks. In CVPR, 2019.
|