[1]Evans,S,(2023)Renewables Will Be World's Top Electricity Source within Three Years IEA Data Reveals;
[2]蔡明機,“合成有機染料以應用於染敏太陽能電池暨鋅紫質以應用於高分子太陽能電池”,國立暨南國際大學應用化學系研究所碩士學位論文。[3]財經知識庫,2017,“太陽能轉換效率提升”5月。
[4]承躍能源股份有限公司,2023,“太陽能板尺寸怎麼看?一次搞懂太陽能板種類、結構與規格”12月。
[5]顧鴻濤著,2008,“太陽能電池元件導論:材料、元件、製程、系統”,全威圖書有限公司。
[6]周起達,2005,“以紫質及酞花青敏化之二氧化鈦染料敏化太陽能電池研究”,國立台灣科技大學化學工程系碩士學位論文。
[7]星陽能源,2021,“太陽能發電原理”。
[8]王政凱,2007“太陽能光譜介紹”,國立陽明交通大學。
[9]勢動科技,2015,“光譜儀的光學基礎”3月。
[10]Tawfik,M.,Tonnellier,X.,&Sansom,C.(2018).Light source selection for a solar simulator for thermal applications: A review Renewable and Sustainable Energy Reviews,90, 802-813
[11]W. Wettling., High efficiency silicon solar cells: State of the art and trends. Solar Energy Materials and Solar Cells,38 (1995)p.487-500
[12]F.C.Marques,A.D.SoaresCortes,P.R.Mei.Solar Cells Fabricated in Upgraded Metallurgical Silicon,Obtained Through Vacuum Degassing and Czochralski Growth.Silicon,11(2019), pp.77-83
[13]Schropp, R.E. and M. Zeman, Amorphous and microcrystalline silicon solar cells: modeling, materials and device technology. Vol. 8. 1998: Springer.
[14]Noufi, R., High-efficiency CdTe and CIGS Thin-film Solar Cells. 2006: National Renewable Energy Laboratory.
[15]湯東霖,2018,“應用新型有機染料用於染料敏化太陽能電池之研究”,國立聯合大學光電工程學系碩士學位論文。[16]陳博楷,2017,“I. 染料敏化太陽能電池無碘半固態電解質之製備 II. 氧化鋅奈米片球體應用於染料敏化太陽能電池之研究”,國立台北科技大學有機高分子研究所碩士學位論文。[17]AnsForce,2017“染料敏化太陽能電池”10月。
[18]Kumar, D.K., et al., Functionalized metal oxide nanoparticles for efficient dye-sensitized solar cells (DSSCs): A review. Materials Science for Energy Technologies, 2020. 3: p. 472-481.
[19]Tran, Q.-P., J.-S. Fang, and T.-S. Chin, Properties of fluorine-doped SnO2 thin films by a green sol–gel method. Materials Science in Semiconductor Processing, 2015. 40: p. 664-669.
[20]Peng Liu.,et,al.,. Effect of the chemical modifications of thiophene-based N3 dyes on the performance of dye-sensitized solar cells: A density functional theory study. 2013.:p8-14
[21]Kinoshita, T., et al., Wideband dye-sensitized solar cells employing a phosphine-coordinated ruthenium sensitizer. Nature Photonics, 2013. 7(7): p. 535-539.
[22]Giribabu, L., R.K. Kanaparthi, and V. Velkannan, Molecular engineering of sensitizers for dye‐sensitized solar cell applications. The Chemical Record, 2012. 12(3): p. 306-328.
[23]Sri, M.M., M. Buraidah, and L. Teo, Effect of 1-butyl-3-methylimidazolium iodide on the performance of dye-sensitized solar cell having PEO-PVA based gel polymer electrolyte. Materials Today: Proceedings, 2017. 4(4): p. 5161-5168.
[24]Wu, J., et al., Electrolytes in dye-sensitized solar cells. Chemical reviews, 2015. 115(5): p. 2136-2173.
[25]Zhang, J., et al., Honeycomb-like porous gel polymer electrolyte membrane for lithium ion batteries with enhanced safety. Scientific reports, 2014. 4(1): p. 6007.
[26]Fischer, A., et al., Crystal formation involving 1-methylbenzimidazole in iodide/triiodide electrolytes for dye-sensitized solar cells. Solar energy materials and solar cells, 2007. 91(12): p. 1062-1065.
[27]Xu, K., Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chemical reviews, 2004. 104(10): p. 4303-4418.
[28]Wang, Y., Recent research progress on polymer electrolytes for dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 2009. 93(8): p. 1167-1175.
[29]Li, B., et al., Review of recent progress in solid-state dye-sensitized solar cells. Solar energy materials and solar cells, 2006. 90(5): p. 549-573.
[30]Mozaffari, S., M.R. Nateghi, and M.B. Zarandi, An overview of the Challenges in the commercialization of dye sensitized solar cells. Renewable and Sustainable Energy Reviews, 2017. 71: p. 675-686.
[31]Narayan, M.R., Dye sensitized solar cells based on natural photosensitizers. Renewable and sustainable energy reviews, 2012. 16(1): p. 208-215.
[32]Ludin, N.A., et al., Review on the development of natural dye photosensitizer for dye-sensitized solar cells. Renewable and Sustainable Energy Reviews, 2014. 31: p. 386-396.
[33]Hao, S., et al., Natural dyes as photosensitizers for dye-sensitized solar cell. Solar energy, 2006. 80(2): p. 209-214.
[34]Omar, A., M.S. Ali, and N. Abd Rahim, Electron transport properties analysis of titanium dioxide dye-sensitized solar cells (TiO2-DSSCs) based natural dyes using electrochemical impedance spectroscopy concept: A review. Solar Energy, 2020. 207: p. 1088-1121.
[35]Kumara, N., et al., Efficiency enhancement of Ixora floral dye sensitized solar cell by diminishing the pigments interactions. Solar Energy, 2015. 117: p. 36-45.
[36]Wongcharee, K., V. Meeyoo, and S. Chavadej, Dye-sensitized solar cell using natural dyes extracted from rosella and blue pea flowers. Solar Energy Materials and Solar Cells, 2007. 91(7): p. 566-571.
[37]Hanaor, D.A. and C.C. Sorrell, Review of the anatase to rutile phase transformation. Journal of Materials science, 2011. 46: p. 855-874.
[38]Mi, Y. and Y. Weng, Band alignment and controllable electron migration between rutile and anatase TiO2. Scientific reports, 2015. 5(1): p. 11482.
[39]Barbé, C.J., et al., Nanocrystalline titanium oxide electrodes for photovoltaic applications. Journal of the American Ceramic Society, 1997. 80(12): p. 3157-3171.
[40]Beltran, A., L. Gracia, and J. Andres, Density functional theory study of the brookite surfaces and phase transitions between natural titania polymorphs. The Journal of Physical Chemistry B, 2006. 110(46): p. 23417-23423.
[41]Lu, H., et al., Synthesis of metal Bi loaded brookite/anatase TiO2 heterophase junction and its improved photocatalytic performance. Optical Materials, 2024. 152: p. 115520.
[42]Kumari, J., et al., The effect of TiO2 photo anode film thickness on photovoltaic properties of dye-sensitized solar cells. Ceylon Journal of Science, 2016. 45(1).
[43]Najihah, M., I. Noor, and T. Winie, Long-run performance of dye-sensitized solar cell using natural dye extracted from Costus woodsonii leaves. Optical Materials, 2022. 123: p. 111915.
[44]Baglio, V., et al., Influence of TiO2 film thickness on the electrochemical behaviour of dye-sensitized solar cells. International Journal of electrochemical science, 2011. 6(8): p. 3375-3384.
[45]Fincan, M., F. DeVito, and P. Dejmek, Pulsed electric field treatment for solid–liquid extraction of red beetroot pigment. Journal of food engineering, 2004. 64(3): p. 381-388.
[46]Ahliha, A., et al. Optical properties of anthocyanin dyes on TiO2 as photosensitizers for application of dye-sensitized solar cell (DSSC). in IOP Conference Series: Materials Science and Engineering. 2018. IOP Publishing.
[47]Joly, D., et al., A robust organic dye for dye sensitized solar cells based on iodine/iodide electrolytes combining high efficiency and outstanding stability. Scientific reports, 2014. 4(1): p. 4033.
[48]Ma, W., Y. Jiao, and S. Meng, Modeling charge recombination in dye-sensitized solar cells using first-principles electron dynamics: effects of structural modification. Physical Chemistry Chemical Physics, 2013. 15(40): p. 17187-17194.
[49]Lee, J.W., et al., Influence of polar solvents on photovoltaic performance of Monascus red dye-sensitized solar cell. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2014. 126: p. 76-80.
[50]Wang, Y., et al., Influence of 4-tert-butylpyridine/guanidinium thiocyanate co-additives on band edge shift and recombination of dye-sensitized solar cells: experimental and theoretical aspects. Electrochimica Acta, 2015. 185: p. 69-75.