|
[1] S. Pereira, E. Pinto, P.A. Ribeiro, S. Sério, Study of a Cold Atmospheric Pressure Plasma jet device for indirect treatment of Squamous Cell Carcinoma, Clinical Plasma Medicine (2018). [2] S.P. Cui, R.L. Hao, D. Fu, An integrated system of dielectric barrier discharge combined with wet electrostatic precipitator for simultaneous removal of NO and SO2: Key factors assessments, products analysis and mechanism, Fuel 221 (2018) 12-20. [3] S.R. Zhou, J. Liu, Q. Hu, T. Jiang, J.C. Yang, S. Liu, H. Zheng, Dielectric fluid directional spreading under the action of corona discharge, Appl. Phys. Lett. 112(4) (2018) 4. [4] R.F. Muvhiiwa, B. Sempuga, D. Hildebrandt, J. Van der Walt, Study of the effects of temperature on syngas composition from pyrolysis of wood pellets using a nitrogen plasma torch reactor, J. Anal. Appl. Pyrolysis 130 (2018) 159-168. [5] H.Y. Chen, L.T. Kuo, W.Y. Chang, C.H. Tsai, Cuprous Oxide Films Prepared by Using a Microwave Atmospheric Pressure Plasma Torch, Advanced Materials Research 47-50 (2008) 1015-1018. [6] H.-Y. Chen, W.-J. Yang, K.-P. Chang, Characterization of delafossite-CuCrO2 thin films prepared by post-annealing using an atmospheric pressure plasma torch, Applied Surface Science 258(22) (2012) 8775-8779. [7] H.-Y. Chen, J.-R. Fu, Delafossite–CuFeO2 thin films prepared by atmospheric pressure plasma annealing, Materials Letters 120 (2014) 47-49. [8] H.-Y. Chen, Y.-C. Lin, J.-S. Lee, Crednerite-CuMnO2 thin films prepared using atmospheric pressure plasma annealing, Applied Surface Science 338 (2015) 113-119. [9] H.-Y. Chen, J.-H. Ou, P-type transparent conductive CuAlO 2 thin films prepared using atmospheric pressure plasma annealing, Materials Letters 228 (2018) 81-84. [10] K. K. Shih, D. B. Dove, J. R. Crowe, Properties of Cr–N films produced by reactive sputtering, 1986. [11] M.A. Gharavi, S. Kerdsongpanya, S. Schmidt, F. Eriksson, N.V. Nong, J. Lu, B. Balke, D. Fournier, L. Belliard, A. le Febvrier, C. Pallier, P. Eklund, Microstructure and thermoelectric properties of CrN and CrN/Cr2N thin films, Journal of Physics D: Applied Physics 51(35) (2018) 355302. [12] D.F. Arias, A. Gómez, R.M. Souza, J.M. Vélez, Residual stress gradient of Cr and CrN thin films, Materials Chemistry and Physics 204 (2018) 269-276. [13] J.A. Sue, A.J. Perry, J. Vetter, Young's modulus and stress of CrN deposited by cathodic vacuum arc evaporation, Surface and Coatings Technology 68-69 (1994) 126-130. [14] Y. Li, L. Gao, J. Li, D. Yan, Synthesis of Nanocrystalline Chromium Nitride Powders by Direct Nitridation of Chromium Oxide, Journal of the American Ceramic Society 85(5) (2002) 1294-1296. [15] Y. Shoji, M. Yoshinaka, K. Hirota, O. Yamaguchi, Fabrication of Bulk Chromium Nitrides Using Self-Propagating High-Temperature Synthesis and Hot Isostatic Pressing, 2002. [16] R. Ichiki, H. Nagamatsu, Y. Yasumatsu, T. Iwao, S. Akamine, S. Kanazawa, Nitriding of steel surface by spraying pulsed-arc plasma jet under atmospheric pressure, Materials Letters 71 (2012) 134-136. [17] H. Nagamatsu, R. Ichiki, Y. Yasumatsu, T. Inoue, M. Yoshida, S. Akamine, S. Kanazawa, Steel nitriding by atmospheric-pressure plasma jet using N2/H2 mixture gas, Surface and Coatings Technology 225 (2013) 26-33. [18] R.P. Cardoso, G. Arnoult, T. Belmonte, G. Henrion, S. Weber, Titanium Nitriding by Microwave Atmospheric Pressure Plasma: Towards Single Crystal Synthesis, Plasma Processes and Polymers 6(S1) (2009) S302-S305. [19] L. Lin, S.A. Starostin, Q. Wang, V. Hessel, An atmospheric pressure microplasma process for continuous synthesis of titanium nitride nanoparticles, Chemical Engineering Journal 321 (2017) 447-457. [20] H.C. Barshilia, N. Selvakumar, B. Deepthi, K.S. Rajam, A comparative study of reactive direct current magnetron sputtered CrAlN and CrN coatings, Surface and Coatings Technology 201(6) (2006) 2193-2201. [21] R. Friedl, U. Fantz, Spectral intensity of the N2emission in argon low-pressure arc discharges for lighting purposes, New Journal of Physics 14(4) (2012) 043016. [22] B. Kuzƒlakowska-Pawlak, W. Żyrnicki, Characterization of a d.c. titanium tetraisopropoxide/H2N2 plasma using emission spectroscopy, Thin Solid Films 266(1) (1995) 8-13.
|