[1]公開資訊觀測站,https://mops.twse.com.tw/mops/web/index
[2]王姿分,2018,信用評等、企業社會責任與債務資金成本的關聯性,國立成功大學,碩士論文。[3]白紫璇,2018,會計師查核報告中關鍵查核事項對市場之影響,國立中興大學,碩士論文。[4]任立斌,2018,應用特徵選取進行股價預測與獲利可能性之研究,國立中興大學,碩士論文。[5]朱晏嬅,2008,應用最鄰近區域分類法於慢性病分類預警準則之研究,私立元智大學,碩士論文。[6]吳肇銘,金志聿,蔡毓霖,2019,“運用文字探勘於教學評鑑分析之研究-以中原大學資管系課程為例”,商管科技季刊,20卷,4期,頁437-468。12月。
[7]巫鑫,2016,“因應新式會計師查核報告-上市櫃公司辦理105年度決算最新實務”,會計研究月刊,373期,頁76-81,12月1日。
[8]辛祐任,2019,探討DNN、CNN和CapsNet於高混合度之中文母音辨識,國立中興大學,碩士論文。[9]邱昱雯,2019,自然語言處理之專利分析研究,國立臺北科技大學,碩士論文。[10]段宇娟,2020,應用關鍵查核事項偵測公司營運風險,國立中正大學,碩士論文。[11]馬瑞貽,2020,基於循環神經網路的風力風速歷時資料預測模型,淡江大學,碩士論文。[12]張烱明,2018,企業信用評等與社會責任對授信品質影響之研究,國立中興大學,碩士論文。[13]莊翊萱,2020,公司特質與關鍵查核事項揭露之關聯性,國立高雄科技大學,碩士論文。[14]許永聲,陳俊合,曾奕菱,2013,“企業社會責任與信用風險評等”,會計學報,5卷,1期,頁1-26,11月。
[15]許智宇,2010,整合KMV模型、約略集合及隨機森林應用於企業信用評等之研究,國立臺北科技大學,碩士論文。[16]陳益軒,2013,以決策樹為基礎之支援向量機模型於信用評等之研究,國立暨南國際大學,碩士論文。[17]陳博文,2011,結合支援向量機與粒子群最佳化探索臺灣股市預測模式,國立臺北科技大學,碩士論文。[18]童聰進,2006,銀行信用風險額度控管資訊系統之探討,國立臺灣大學,碩士論文。[19]黃聖翔,2011,TFIDF與熵值法在支援向量機上分類評估-以統計試題為例,國立臺北科技大學,碩士論文。[20]楊植翔,2016,三連發聲特徵與多輸入多目標之深層類神經網路,國立臺灣大學,碩士論文。[21]鄒明城,韓慧林,邱景星,2010,“網頁地理資訊檢索與探勘-以民宿主題為例”,資訊管理學報,17卷,3期,頁19-44,10月。
[22]臺灣經濟新報,https://www.tej.com.tw
[23]蔡明哲,2012,應用於年齡識別之生物智能演算法輔助多重分類器,國立高雄應用科技大學,碩士論文。[24]鄭政宇,2019,集團企業委任不同會計師事務所之會計師查核-對關鍵查核事項及盈餘管理之影響,國立中興大學,碩士論文。[25]謝宗哲,2018,基於深度學習循環類神經結合注意力機制建立語言模型,國立臺中科技大學,碩士論文。[26]蘇裕惠,李冠儒,2020,“關鍵查核事項的揭露數量對盈餘資訊內涵的影響”, 會計審計論叢,10卷,1期,頁1-38,6月1日。
[27]Bengio, Y., Courville, A. & Vincent, P., 2013, “Representation Learning: A Review and New Perspectives.”, IEEE Transactions on Software Engineering, Vol. 35, No. 8, pp. 1798-1828, March.
[28]Breiman, L., 2011, “Random forests.”, Machine Learning, Vol. 45, pp. 5-32, October.
[29]Chen, Y.J., Liou, W.C., Chen, Y.M., Wu, J.H., 2019, “Fraud detection for financial statements of business groups.”, International Journal of Accounting Information Systems, vol. 32, pp. 1-23, March.
[30]Chen, Y.J., Wu, C.Y., 2021, “Predicting a corporate financial crisis using letters to shareholders.”, Soft Computing, vol. 25, pp. 3623-3636, November.
[31]Chinese Knowledge Information Processing Group. http://ckipsvr.iis.sinica.edu.tw/
[32]Cortes, C., Vapnik, V., 1995, “Support-Vector Networks.”, Machine Language, Vol. 20, No. 3, September.
[33]Cover, T., Hart, P., 1967, “Nearest neighbor pattern classification.”, IEEE Transactions on Information Theory, Vol. 13, No. 1, pp. 21-27, January.
[34]Elman, J.L., 1990, “Finding structure in time.”, Cognitive Science, Vol. 14, No. 2, April–June.
[35]Golbayani, P., Florescu, I. & Chatterjee, R., 2020, “A comparative study of forecasting corporate credit ratings using neural networks, support vector machines, and decision trees.”, The North American Journal of Economics and Finance, Vol. 54, 101251, November.
[36]Hsieh, F., Turnbull, B. 1996, “Nonparametric and semiparametric estimation of the receiver operating characteristic curve.”, The Annals of Statistics, Vol. 24, No. 1, pp. 25-40, February.
[37]Hsu, F.J., Chen, M.Y. Chen, Y.C., 2018, “The human-like intelligence with bio-inspired computing approach for credit ratings prediction.”, Neurocomputing, Vol. 279, pp. 11-18, March.
[38]Huang, Z., Chen, H.C., Hsu, C.J., Chen, W.H., Wu, S.S., 2004, “Credit rating analysis with support vector machines and neural networks: a market comparative study.”, Decision Support Systems, Vol. 37, No. 4, pp. 543-558, September.
[39]Kim, K.J., Ahn, H., 2012, “A corporate credit rating model using multi-class support vector machines with an ordinal pairwise partitioning approach.”, Computers & Operations Research, Vol. 39, No. 8, pp. 1800-1811, August.
[40]Li, J.P., Mirza, N., Rahat, B., Xiong, D.,2020, “Machine learning and credit ratings prediction in the age of fourth industrial revolution.”, Technological Forecasting and Social Change, Vol. 161, 120309, December.
[41]Wang, G., Ma, J., 2011, “Study of corporate credit risk prediction based on integrating boosting and random subspace.”, Expert Systems with Applications, Vol. 38, No. 11, pp. 13871-13878, October.
[42]Wang, M., Ku, H., 2021, “Utilizing historical data for corporate credit rating assessment.”, Expert Systems with Applications, Vol. 165, 113925, March.
[43]Werbos, P.J., 1974, “Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences”, PhD thesis, Harvard University.
[44]Zhong, H., Miao, C., Shen, Z., Feng, Y., 2014, “Comparing the learning effectiveness of BP, ELM, I-ELM, and SVM for corporate credit ratings.”, Neurocomputing, Vol. 128, pp. 285-295, March.
[45]Zhu, Y., Zhou, L., Xie, C., Wang, G.J., Nguyen, T.V., 2019, “Forecasting SMEs' credit risk in supply chain finance with an enhanced hybrid ensemble machine learning approach.”, International Journal of Production Economics, Vol. 211, pp. 22-23, May.