|
[1]聯合國氣候變化綱要公約.(1992).在維基百科https://zh.wikipedia.org/zh-tw/%E8%81%94%E5%90%88%E5%9B%BD%E6%B0%94%E5%80%99%E5%8F%98%E5%8C%96%E6%A1%86%E6%9E%B6%E5%85%AC%E7%BA%A6 [2]國際報導.(2022).在工商時報https://ctee.com.tw/news/global/773065.html [3] Amazon EC2.(無日期).在Amazon網站http://aws.amazon.com/ec2/. [4] Google APPs.(無日期).在Google網站http://www.google.com/apps/intl/en/business/index.html. [5] Microsoft Windows Azure.(無日期).在Microsoft 網站http://www.microsoft.com/windowsazure/. [6]市場研究機構調查顯示 .(2020).在報導https://www.ithome.com.tw/news/143065 [7]綠色计算. (無日期). 在维基百科.https://zh.wikipedia.org/wiki/绿色计算 [8]齊夫定律. (1949). 在维基百科. https://zh.wikipedia.org/wiki/齊夫定律 [9]Ali, A., Lu, L., Zhu, Y., & Yu, J. (2016). An energy efficient algorithm for virtual machine allocation in cloud datacenters. In Advanced Computer Architecture: 11th Conference, ACA 2016, Weihai, China, August 22-23, 2016, Proceedings 11 (pp. 61-72). Springer Singapore. [10] Beloglazov, A., Abawajy, J., & Buyya, R. (2012). Energy-aware resource allocation heuristics for efficient management of data centers for cloud computing. Future generation computer systems, 28(5), 755-768. [11] Jena, S. R., Bisoy, S. K., & Dewan, B. (2019, September). Performance Evaluation of Energy Efficient Power Models for Different Scheduling Algorithms in Cloud using Cloud Reports. In 2019 International Conference on Computing, Power and Communication Technologies (GUCON) (pp. 880-891). IEEE.
[12] Chou, L. D., Chen, H. F., Tseng, F. H., Chao, H. C., & Chang, Y. J. (2016). DPRA: dynamic power-saving resource allocation for cloud data center using particle swarm optimization. IEEE Systems Journal, 12(2), 1554-1565. [13] Adhikary, T., Das, A. K., Razzaque, M. A., & Sarkar, A. J. (2013, November). Energy-efficient scheduling algorithms for data center resources in cloud computing. In 2013 IEEE 10th International Conference on High Performance Computing and Communications & 2013 IEEE International Conference on Embedded and Ubiquitous Computing (pp. 1715-1720). IEEE. [14] Zhou, Z., Shojafar, M., Alazab, M., Abawajy, J., & Li, F. (2021). AFED-EF: An energy-efficient VM allocation algorithm for IoT applications in a cloud data center. IEEE Transactions on Green Communications and Networking, 5(2), 658-669 [15] Usman, M. J., Samad, A., Chizari, H., & Aliyu, A. (2017, May). Energy-Efficient virtual machine allocation technique using interior search algorithm for cloud datacenter. In 2017 6th ICT international student project conference (ICT-ISPC) (pp. 1-4). IEEE. [16] Ghribi, C., Hadji, M., & Zeghlache, D. (2013, May). Energy efficient vm scheduling for cloud data centers: Exact allocation and migration algorithms. In 2013 13th IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing (pp. 671-678). IEEE. [17] Sun, G., Liao, D., Zhao, D., Xu, Z., & Yu, H. (2015). Live migration for multiple correlated virtual machines in cloud-based data centers. IEEE Transactions on Services Computing, 11(2), 279-291. [18] Li, H., Zhu, G., Cui, C., Tang, H., Dou, Y., & He, C. (2016). Energy-efficient migration and consolidation algorithm of virtual machines in data centers for cloud computing. Computing, 98, 303-317. [19] Than, M. M., & Thein, T. (2020, February). Energy-saving resource allocation in cloud data centers. In 2020 IEEE Conference on Computer Applications (ICCA) (pp. 1-6). IEEE.. [20] Yao, F., Wu, J., Venkataramani, G., & Subramaniam, S. (2018). Ts-batpro: Improving energy efficiency in data centers by leveraging temporal–spatial batching. IEEE Transactions on Green Communications and Networking, 3(1), 236-249. [21] Pinheiro, E., & Bianchini, R. (2004, June). Energy conservation techniques for disk array-based servers. In Proceedings of the 18th annual international conference on Supercomputing (pp. 68-78). [22] Yao, Z., Wang, Y., Ba, J., Zong, J., Feng, S., & Wu, Z. (2017, November). Deadline-aware and energy-efficient dynamic flow scheduling in data center network. In 2017 13th International Conference on Network and Service Management (CNSM) (pp. 1-4). IEEE. [23] Wei, M., Zhou, J., & Gao, Y. (2017, May). Energy efficient routing algorithm of software defined data center network. In 2017 IEEE 9th International Conference on Communication Software and Networks (ICCSN) (pp. 171-176). IEEE. [24] Lin, Q. L., & Yu, S. Z. (2016). A distributed green networking approach for data center networks. IEEE Communications Letters, 21(4), 797-800.. [25] Wei, M., Zhou, J., & Gao, Y. (2017, May). Energy efficient routing algorithm of software defined data center network. In 2017 IEEE 9th International Conference on Communication Software and Networks (ICCSN) (pp. 171-176). IEEE. [26] Kliazovich, D., Bouvry, P., & Khan, S. U. (2010, December). DENS: data center energy-efficient network-aware scheduling. In 2010 IEEE/ACM Int'l Conference on Green Computing and Communications & Int'l Conference on Cyber, Physical and Social Computing (pp. 69-75). IEEE.. [27] Shuja, J., Bilal, K., Madani, S. A., & Khan, S. U. (2014). Data center energy efficient resource scheduling. Cluster Computing, 17, 1265-1277. [28] Ghribi, C., Hadji, M., & Zeghlache, D. (2013, May). Energy efficient vm scheduling for cloud data centers: Exact allocation and migration algorithms. In 2013 13th IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing (pp. 671-678). IEEE. [29] Yuan, H., & Zhou, M. (2020). Profit-maximized collaborative computation offloading and resource allocation in distributed cloud and edge computing systems. IEEE Transactions on Automation Science and Engineering, 18(3), 1277-1287. [30] Xie, R., Wen, Y., Jia, X., & Xie, H. (2014). Supporting seamless virtual machine migration via named data networking in cloud data center. IEEE Transactions on Parallel and Distributed Systems, 26(12), 3485-3497. [31] Gu, C., Li, Z., Huang, H., & Jia, X. (2018). Energy efficient scheduling of servers with multi-sleep modes for cloud data center. IEEE Transactions on Cloud Computing, 8(3), 833-846. [32] Fan, L., Gu, C., Qiao, L., Wu, W., & Huang, H. (2017, August). GreenSleep: a multi-sleep modes based scheduling of servers for cloud data center. In 2017 3rd International Conference on Big Data Computing and Communications (BIGCOM) (pp. 368-375). IEEE [33] Yin, C., Liu, J., & Jin, S. (2020). An energy-efficient task scheduling mechanism with switching on/sleep mode of servers in virtualized cloud data centers. Mathematical Problems in Engineering, 2020, 1-11. [34] Qie, X., Jin, S., & Yue, W. (2018). A Clustered Virtual Machine Allocation Strategy Based on an N-Threshold Sleep-Mode in a Cloud Environment. In Queueing Theory and Network Applications: 13th International Conference, QTNA 2018, Tsukuba, Japan, July 25-27, 2018, Proceedings 13 (pp. 124-132). Springer International Publishing. [35] Qiu, C., Zhao, C., Xu, F., & Yang, T. (2016). Sleeping mode of multi-controller in green software-defined networking. EURASIP Journal on Wireless Communications and Networking, 2016(1), 1-9. [36] Han, G., Que, W., Jia, G., & Shu, L. (2016). An efficient virtual machine consolidation scheme for multimedia cloud computing. Sensors, 16(2), 246. [37] Jin, S., Wang, X., & Yue, W. (2018). A task scheduling strategy with a sleep-delay timer and a waking-up threshold in cloud computing. In Queueing Theory and Network Applications: 13th International Conference, QTNA 2018, Tsukuba, Japan, July 25-27, 2018, Proceedings 13 (pp. 115-123). Springer International Publishing. [38] Monil, M. A. H., & Rahman, R. M. (2016). VM consolidation approach based on heuristics, fuzzy logic, and migration control. Journal of Cloud Computing, 5, 1-18. [39] Cui, Y., Zhang, Y., Li, X., & Jin, S. (2023). A dynamic energy conservation scheme with dual-rate adjustment and semi-sleep mode in cloud system. The Journal of Supercomputing, 79(3), 2451-2487. [40] Wang, H., & Tianfield, H. (2018). Energy-aware dynamic virtual machine consolidation for cloud datacenters. IEEE Access, 6, 15259-15273. [41] Malekloo, M. H., Kara, N., & El Barachi, M. (2018). An energy efficient and SLA compliant approach for resource allocation and consolidation in cloud computing environments. Sustainable Computing: Informatics and Systems, 17, 9-24. [42] Qie, X., Jin, S., & Yue, W. (2019). An energy-efficient strategy for virtual machine allocation over cloud data centers. Journal of Network and Systems Management, 27, 860-882. [43] Mishra, S. K., Puthal, D., Sahoo, B., Jayaraman, P. P., Jun, S., Zomaya, A. Y., & Ranjan, R. (2018). Energy-efficient VM-placement in cloud data center. Sustainable computing: informatics and systems, 20, 48-55. [44] Chen, W., Chen, H., Guan, Q., Ji, F., & Guo, B. (2018). Evolutionary sleep scheduling in software-defined networks. IEEE Access, 6, 29541-29550. [45] Wang, Y., Chen, H., Wu, X., & Shu, L. (2016). An energy-efficient SDN based sleep scheduling algorithm for WSNs. Journal of Network and Computer Applications, 59, 39-45.. [46] Huang, Y., Xu, H., Gao, H., Ma, X., & Hussain, W. (2021). SSUR: an approach to optimizing virtual machine allocation strategy based on user requirements for cloud data center. IEEE Transactions on Green Communications and Networking, 5(2), 670-681. [47] Beloglazov, A., & Buyya, R. (2012). Optimal online deterministic algorithms and adaptive heuristics for energy and performance efficient dynamic consolidation of virtual machines in cloud data centers. Concurrency and Computation: Practice and Experience, 24(13), 1397-1420.
|