|
[1] 石伊蓓, 吳育仁, 馮展華, & 廖昆隆. (2020). 台灣齒輪設計與製造智慧現 況. 機械資訊月刊. https://www.tami.org.tw/sp1/print/761/761_01.html [2] 李家岩, & 洪佑鑫. (2022). 製造數據科學: 邁向智慧製造與數位決策. 前 程文化事業股份有限公司. https://books.google.com.tw/books?id=_tA_zwEACAAJ [3] 林樹強 . (2017). 工作研究 : 工 業 4.0. 鼎茂圖書出版股份有限公司 . https://books.google.com.tw/books?id=R5uIzwEACAAJ [4] 邱國祥. (2020). 以多元線性迴歸與機器學習模型預估不動產價格 -以台中 市實價登錄為例 國立中興大學]. 臺灣博碩士論文知識加值系統. 台中市. https://hdl.handle.net/11296/nd3u33 [5] 洪雪娟 , & 陳 怡 靜 . (2023). 金 屬 製 品 產 業 韌 性 供 應 . 工 業 材 料 雜 誌 . https://www.materialsnet.com.tw/DocView.aspx?id=52176 [6] 陳 士 端 . (2006). 齒 輪 製 造 業 的 回 顧 、 現 況 與 展 望 . 機 械 資 訊 月 刊 . http://www.tami.org.tw/print/588/588_01.htm [7] 賀力行, 林淑萍, & 蔡明春. (2008). 統計學: 觀念, 方法, 應用. 前程文化. https://books.google.com.tw/books?id=kmpgtwAACAAJ [8] 楊琮文. (2022). 多元線性迴歸預測及分析嘉義市區細懸浮微粒 國立中正 大學]. 臺灣博碩士論文知識加值系統. 嘉義縣. https://hdl.handle.net/11296/uxr9nm [9] 趙泓諭. (2023). 使用機器學習與多元線性迴歸模型分析台灣股票匯率趨勢 ( 2018-2022 年 ) 逢 甲 大 學 ]. 臺 灣 博 碩 士 論 文 知 識 加 值 系 統 . 台中市 . https://hdl.handle.net/11296/jx7ydz [10] 劉德騏, 林清源, 張金隆, 張煌權, & 何寅綺. (2020). 高階齒輪加工機國產 化的推動. 機械工業雜誌, 444, 5-10. [11] 齒輪 ABC 編寫組. (2006). 齒輪入門. 小原歯車工業株式会社. [12] 戴辰. (2023). 台灣齒輪產業大未來與 ESG 永續經營系列三 齒輪產業未 來市場趨勢與機遇. 工商時報. https://www.ctee.com.tw/news/20230704700442-431203 [13] 簡禎富 , & 許 嘉 裕 . (2014). 資 料 挖 礦 與 大 數 據 分 析 . 前 程 文 化 . https://books.google.com.tw/books?id=zELurQEACAAJ [14] Albon, C. (2018). Machine Learning with Python Cookbook: Practical Solutions from Preprocessing to Deep Learning. O'Reilly Media. 74 https://books.google.com.tw/books?id=kIhQDwAAQBAJ [15] Bekesiene, S., & Meidute-Kavaliauskiene, I. (2022). Artificial Neural Networks for Modelling and Predicting Urban Air Pollutants: Case of Lithuania. Sustainability, 14(4). https://doi.org/10.3390/su14042470 [16] Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32. https://doi.org/10.1023/a:1010933404324 [17] Çakıt, E., & Dağdeviren, M. (2023). Comparative analysis of machine learning algorithms for predicting standard time in a manufacturing environment. Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 37. https://doi.org/10.1017/s0890060422000245 [18] Chang, W., Wang, X., Yang, J., & Qin, T. (2023). An Improved CatBoost-Based Classification Model for Ecological Suitability of Blueberries. Sensors, 23(4). [19] Chiang, Y.-M., Chang, L.-C., & Chang, F.-J. (2004). Comparison of staticfeedforward and dynamic-feedback neural networks for rainfall–runoff modeling. Journal of Hydrology, 290(3), 297-311. https://doi.org/https://doi.org/10.1016/j.jhydrol.2003.12.033 [20] Chu, H., Dong, K., Yan, J., Li, Z., Liu, Z., Cheng, Q., & Zhang, C. (2023). Flexible process planning based on predictive models for machining time and energy consumption. The International Journal of Advanced Manufacturing Technology, 128, 1-18. https://doi.org/10.1007/s00170-023-12027-3 [21] Cornelius, E., Akman, O., & Hrozencik, D. (2021). COVID-19 Mortality Prediction Using Machine Learning-Integrated Random Forest Algorithm under Varying Patient Frailty. Mathematics, 9(17). https://doi.org/10.3390/math9172043 [22] Ersöz, T., Güven, I., & Ersöz, F. (2022). Defective products management in a furniture production company: A data mining approach [Article]. Applied Stochastic Models in Business and Industry , 38(5), 901-914. https://doi.org/10.1002/asmb.2685 [23] Falkenberg, S. F., & Spinler, S. (2023). Integrating operational and human factors to predict daily productivity of warehouse employees using extreme gradient boosting. International Journal of Production Research, 61(24), 8654- 8673. https://doi.org/10.1080/00207543.2022.2159563 75 [24] Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. The Annals of Statistics, 29(5), 1189-1232, 1144. https://doi.org/10.1214/aos/1013203451 [25] Gatarić, D., Ruškić, N., Aleksić, B., Đurić, T., Pezo, L., Lončar, B., & Pezo, M. (2023). Predicting Road Traffic Accidents—Artificial Neural Network Approach. Algorithms, 16(5). [26] Géron, A. (2019). Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow. O’Reilly Media, Inc. [27] Gómez, M. M. (2020). Prediction of work-related musculoskeletal discomfort in the meat processing industry using statistical models [Article]. International Journal of Industrial Ergonomics, 75, 9, Article 102876. https://doi.org/10.1016/j.ergon.2019.102876 [28] Hastie, T., Tibshirani, R., & Friedman, J. H. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction . Springer. https://books.google.com.tw/books?id=eBSgoAEACAAJ [29]Jain, K., & Choudhary, N. (2022). Comparative analysis of machine learning techniques for predicting production capability of crop yield. International Journal of System Assurance Engineering and Management, 13(S1), 583-593. https://doi.org/10.1007/s13198-021-01543-8 [30] Kanal, L. (2003). Perceptron. 1383-1385. [31] Kang, K.-S., Kim, T.-H., & Rhee, I.-K. (1994). The establishment of standard time in die manufacturing process using standard data. Computers & Industrial Engineering, 27(1), 539-542. https://doi.org/https://doi.org/10.1016/0360- 8352(94)90353-0 [32] Ko, C. S., Cha, M. S., & Rho, J. J. (2007). A case study for determining standard time in a multi-pattern and short life-cycle production system. Computers & Industrial Engineering, 53(2), 321-325. https://doi.org/10.1016/j.cie.2007.06.025 [33] Koyama, K., Tanaka, M., Cho, B.-H., Yoshikawa, Y., & Koseki, S. (2021). Predicting sensory evaluation of spinach freshness using machine learning model and digital images. PLOS ONE, 16, e0248769. https://doi.org/10.1371/journal.pone.0248769 76 [34] Kutschenreiter-Praszkiewicz, I. (2008). Application of artificial neural network for determination of standard time in machining. Journal of Intelligent Manufacturing, 19(2), 233-240. https://doi.org/10.1007/s10845-008-0076-6 [35] Liao, H.-y., Cade, W., & Behdad, S. (2021). Forecasting Repair and Maintenance Services of Medical Devices Using Support Vector Machine. Journal of Manufacturing Science and Engineering, 144(3). https://doi.org/10.1115/1.4051886 [36] McGill, R., Tukey, J. W., & Larsen, W. A. (1978). Variations of Box Plots. The American Statistician, 32(1), 12-16. https://doi.org/10.2307/2683468 [37] Monego, V. S., Anochi, J. A., & de Campos Velho, H. F. (2022). South America Seasonal Precipitation Prediction by Gradient-Boosting Machine-Learning Approach. Atmosphere, 13(2). [38] Morapedi, T. D., & Obagbuwa, I. C. (2023). Air pollution particulate matter (PM2.5) prediction in South African cities using machine learning techniques. Front Artif Intell, 6, 1230087. https://doi.org/10.3389/frai.2023.1230087 [39] Pearson, K. (1900). X. On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science , 50(302), 157-175. https://doi.org/10.1080/14786440009463897 [40] Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V., & Gulin, A. (2018). CatBoost: unbiased boosting with categorical features Proceedings of the 32nd International Conference on Neural Information Processing Systems, Montréal, Canada. [41] Rashid, T. (2016). Make Your Own Neural Network: A Gentle Journey Through the Mathematics of Neural Networks, and Making Your Own Using the Python Computer Language. CreateSpace Independent Publishing Platform. https://books.google.com.tw/books?id=Zli_jwEACAAJ [42] Rodrigues, A., Silva, F. J. G., Sousa, V. F. C., Pinto, A. G., Ferreira, L. P., & Pereira, T. (2022). Using an Artificial Neural Network Approach to Predict Machining Time. Metals, 12(10). [43] Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning 77 representations by back-propagating errors. Nature, 323(6088), 533-536. https://doi.org/10.1038/323533a0 [44] Sahadevan, D., Al Ali, H., Notman, D., & Mukandavire, Z. (2023). Optimising Airport Ground Resource Allocation for Multiple Aircraft Using Machine Learning-Based Arrival Time Prediction. Aerospace, 10(6). https://doi.org/10.3390/aerospace10060509 [45] Singh, B. (2021). Predicting airline passengers’ loyalty using artificial neural network theory. Journal of Air Transport Management, 94, 102080. https://doi.org/https://doi.org/10.1016/j.jairtraman.2021.102080 [46] Swamynathan, M. (2017). Mastering Machine Learning with Python in Six Steps. https://doi.org/10.1007/978-1-4842-2866-1 [47] Tewari, P. C. (2017). Work Study and Ergonomics. CRC Press. https://books.google.com.tw/books?id=TR-qtAEACAAJ [48] Wang, T., Hu, S. H., & Jiang, Y. (2021). Predicting shared-car use and examining nonlinear effects using gradient boosting regression trees [Article]. International Journal of Sustainable Transportation, 15(12), 893-907. https://doi.org/10.1080/15568318.2020.1827316 [49] Wu, D., Jennings, C., Terpenny, J., Gao, R. X., & Kumara, S. (2017). A Comparative Study on Machine Learning Algorithms for Smart Manufacturing: Tool Wear Prediction Using Random Forests. Journal of Manufacturing Science and Engineering, 139(7). https://doi.org/10.1115/1.4036350 [50] Yan, X., Liu, X., & Zhao, X. (2020). Using machine learning for direct demand modeling of ridesourcing services in Chicago. Journal of Transport Geography, 83. https://doi.org/10.1016/j.jtrangeo.2020.102661 [51] Yoon, J. (2020). Forecasting of Real GDP Growth Using Machine Learning Models: Gradient Boosting and Random Forest Approach. Computational Economics, 57(1), 247-265. https://doi.org/10.1007/s10614-020-10054-w [52] Zhang, Q., Liu, F., Wan, X., & Xu, G. (2015). An Adaptive Support Vector Regression Machine for the State Prognosis of Mechanical Systems. Shock and Vibration, 2015, 469165. https://doi.org/10.1155/2015/469165
|