|
[1] Spectrum for 4G and 5G 2017 Qualcomm Technologies, Inc. [2] A. N. Barreto, B. Faria, E. Almeida, I. Rodriguez, M. Lauridsen, R. Amorim, and R. Vieira, “5G wireless communications for 2020,” Journal Of Communication and Information Systems, vol. 31, no. 1, 2016. [3] B. Jia, T. Zhou, H. Hu, Y. Yang, Z. Li, and S. Boumard, “Flexible uplink MU-MIMO scheduling in unlicensed spectrum,” China Commun, vol. 14, no. 12, pp. 59 - 71, Dec. 2017. [4] A. Harada, Y. Inoue, D. Kurita, and T. Obara, “5G trials with major global vendors, ” NTT DOCOMO Technical Journal, vol. 17 no. 4. [5] 向敬成,張明友,周俊杰,Rader System 雷達系統,五南圖書出版公司,ISBN:978-9-571-13622-6。 [6] J. Ploennigs, J. Cohn, and A. S. Clark, “The future of IoT,” IEEE Internet of Things Magazine, September 2018. [7] P. S. Sahoo, C. C. Chou, C. W. Weng, and Y. W. Huang, “Enabling millimeter-wave 5G networks for massive IoT applications,” IEEE Consumer Electronics Magazine, January 2019. [8] W. Zhang, Q. Wang, X. He, Y. He, R. Jian, and Q. Chen, “A broadband 16-element 2-D phased array based on quasi-yagi antennas,” Proceeding of the 11th European Rader Conference, 2014. [9] K. Ding, C. Gao, D. Qu, and Q. Yin, “Compact broadband MIMO antenna with parasitic strip,” IEEE Antennas Wirel. Propag. Lett, vol. 16, pp. 2349–2353, 2017. [10] R. Li, D. M. Namara, and G. Wei, “Characteristic models evaluation for metallic small antennas with unidirectional pattern,” IEEE Antennas Wirel. Propag. Lett, vol.16,2017. [11] M.C. Tang, T. Shi, and R. W. Ziolkowski, “Flexible efficient quasi-yagi printed uniplanar antenna,” IEEE Trans. Antennas Propag, vol. 63, no. 12, pp. 5343–5350, 2015. [12] B. Jia, T. Zhou, H. Hu, Y. Yang, Z. Li, and S. Boumard, “Flexible uplink MU-MIMO scheduling in unlicensed spectrum,” China Commun, vol. 14, no. 12, pp. 59–71, 2017. [13] P. Y. Qin, A. R. Weily, Y. J. Guo, T. S. Bird, and C. H. Liang, “Frequency reconfigurable quasi-yagi folded dipole antenna,” IEEE Trans. Antennas Propag, vol. 58, no. 8, pp. 2742–2747, 2010. [14] G. C. Huang, M. F. Iskander, and Z. Zhang, “Circularly polarized beam-switching antenna array design for directional networks,” IEEE Antennas Wirel. Propag. Lett, vol. 17, no. 4, 2018. [15] M. A. Hossain, I. Bahceci, and B. A. Cetiner, “Parasitic layer-based radiation pattern reconfigurable antenna for 5G communications,” IEEE Trans. Antennas Propag, vol. 65, no. 12 , 2017. [16] D. M. Pozar, and B. Kaufman, “Design considerations for low sidelobe microstrip arrays,” IEEE Trans. Antennas Propag, vol. 38, no. 8, 1990. [17] S. W. Su, “Concurrent 2.4/5-GHz multi-loop MIMO antennas with wide 3-dB beamwidth radiation for access-point applications,” Network Access Strategic Business Unit, Lite-On Technology Corporation no. 90. [18] A. Assalini, M. Midrio, S. Boscolo, and F. Sacchetto, “A compact MIMO array of planar end-fire antennas for WLAN Applications,” IEEE Trans. Antennas Propag, vol. 59, no.9, 2011. [19] N. V. Anh, and P. S. Ook, “Compact switched and reconfigurable 4-ports beam antenna array for MIMO application,” IEEE MTT-S International Microwave Workshop Series on Intelligent Radio for Future Personal Terminals, 2011. [20] G. Tian, J. P. Yang, and W. Wu, “A novel compact butler matrix without phase shifter,” IEEE Microwave and Wirel. components Propag.Lett, vol. 24, no. 5, 2014. [21] C. C. Chang, R. H. Lee, and T. Y. Shih, “Design of a beam switching / steering butler matrix for phased array system,” IEEE Trans. Antennas Propag, vol. 58, no.2, 2010. [22] Y. S. Jeong, and T. W. Kim, “Design and analysis of swapped port coupler and its application in a miniaturized butler matrix.” IEEE Trans. on Microwave Theory and Techniques, vol. 58, no. 4, 2010. [23] K. F. Warnick, R. Maaskant, M. V. Ivashian, D. B. Davidson, and B. D. Jeffs, “High-sensitivity phased array receivers for radio astronomy, ” Proceedings of the IEEE, vol, 104, no. 3, March 2016. [24] J. S. Lin, C. P. Wu, J. y. Hsu, and S. H. Fang, “Study of Sub 6GHz hybird beamforming technology,” ICT Journal, no.168.
|