|
[1]Tso, P.-L. (2010). Optimal Design of a Hybrid-Driven Servo Press and Experimental Verification. Journal of Mechanical Design, 132. [2]Qu, H.-l., Feng, Y.-X., Gao, Y.-C., Tan, J.-R. (2016). Optimization Design of Guiding Device on Hydraulic Press Column Based on Axiomatic Design Theory. Procedia CIRP, 53, 247-251. [3]Strano, M., Monno, M., Rossi, A. (2013). Optimized design of press frames with respect to energy efficiency. Journal of Cleaner Production, 41, 140-149. [4]Hong, C. C., Chang, C. L., & Lin, C. Y. (2016). Static structural analysis of great five-axis turning–milling complex CNC machine. Engineering Science and Technology, an International Journal, 19(4), 1971-1984. [5]Halicioglu, R., Dulger, L. C., Bozdana, A. T. (2016). Structural design and analysis of a servo crank press. Engineering Science and Technology, an International Journal, 19, 2060-2072. [6]Abbasi, F., Sarasua, A., Trinidad, J., Otegi, N., de Argandoña, E. S., & Galdos, L. (2022). Substitutive Press-Bolster and Press-Ram models for the virtual estimation of stamping-tool cambering. Materials, 15(1), 279. [7]Huo, D., Cheng, K., & Wardle, F. (2010). A holistic integrated dynamic design and modelling approach applied to the development of ultraprecision micro-milling machines. International Journal of Machine Tools and Manufacture, 50(4), 335-343. [8]Ji, Q., Li, C., Zhu, D., Jin, Y., Lv, Y., & He, J. (2020). Structural design optimization of moving component in CNC machine tool for energy saving. Journal of Cleaner Production, 246, 118976. [9]Xu, F., Zhang, S., Wu, K., & Dong, Z. (2018). Multi-response optimization design of tailor-welded blank (TWB) thin-walled structures using Taguchi-based gray relational analysis. Thin-Walled Structures, 131, 286-296. [10]Kapsalis, S., Panagiotou, P., & Yakinthos, K. (2021). CFD-aided optimization of a tactical Blended-Wing-Body UAV platform using the Taguchi method. Aerospace Science and Technology, 108, 106395. Chen, S., Zhou, Y., Tang, Z., & Lu, S. (2020). Modal vibration response of rice combine harvester frame under multi-source excitation. Biosystems Engineering, 194, 177-195. [11]Dutta, S., & Narala, S. K. R. (2021). Optimizing turning parameters in the machining of AM alloy using Taguchi methodology. Measurement, 169, 108340. [12]Lin, B. T., & Yang, C. Y. (2017). Applying the Taguchi method to determine the influences of a microridge punch design on the deep drawing. The International Journal of Advanced Manufacturing Technology, 88, 2109-2119. [13]Syrcos, G. P. (2003). Die casting process optimization using Taguchi methods. Journal of Materials Processing Technology, 135(1), 68-74. [14]Chen, D. C., & Chen, C. F. (2006). Use of Taguchi method to develop a robust design for the shape rolling of porous sectioned sheet. Journal of Materials Processing Technology, 177(1-3), 104-108. [15]Adalarasan, R., Santhanakumar, M., & Rajmohan, M. (2015). Optimization of laser cutting parameters for Al6061/SiCp/Al2O3 composite using grey based response surface methodology (GRSM). Measurement, 73, 596-606. [16]Rao, R., & Yadava, V. (2009). Multi-objective optimization of Nd: YAG laser cutting of thin superalloy sheet using grey relational analysis with entropy measurement. Optics & Laser Technology, 41(8), 922-930. [17]Palanivelu, S., Rao, K. N., & Ramarathnam, K. K. (2015). Determination of rolling tyre modal parameters using finite element techniques and operational modal analysis. Mechanical systems and signal processing, 64, 385-402. [18]Shen, L., Ding, X., Li, T., Kong, X., & Dong, X. (2019). Structural dynamic design optimization and experimental verification of a machine tool.The International Journal of Advanced Manufacturing Technology,104, 3773-3786. [19]Xiao, W., Xu, Z., Bian, H., & Li, Z. (2021). Lightweight heavy-duty CNC horizontal lathe based on particle damping materials. Mechanical Systems and Signal Processing, 147, 107127. [20]Li, X., Li, C., Li, P., Hu, H., & Sui, X. (2021). Structural design and optimization of the crossbeam of a computer numerical controlled milling-machine tool using sensitivity theory and NSGA-II algorithm. International Journal of Precision Engineering and Manufacturing, 22, 287-300. [21]Wang, X., Zhang, P., Ludwick, S., Belski, E., & To, A. C. (2018). Natural frequency optimization of 3D printed variable-density honeycomb structure via a homogenization-based approach. Additive Manufacturing, 20, 189-198. [22]Negm, H. M., & Maalawi, K. Y. (2000). Structural design optimization of wind turbine towers. Computers & Structures, 74(6), 649-666. [23]Sun, W., Zhou, J., Gong, D., & You, T. (2016). Analysis of modal frequency optimization of railway vehicle car body. Advances in Mechanical Engineering, 8(4). [24]Liu, Q., Chan, R., & Huang, X. (2016). Concurrent topology optimization of macrostructures and material microstructures for natural frequency. Materials & Design, 106, 380-390. [25]Pilthammar, J., Sigvant, M., Hansson, M., Pálsson, E., Rutgersson, W. (2017). Characterizing the elastic behaviour of a press table through topology optimization. In Journal of Physics: Conference Series 896, 012068. [26]Munk, D. J., Verstraete, D., & Vio, G. A. (2017). Effect of fluid-thermal–structural interactions on the topology optimization of a hypersonic transport aircraft wing. Journal of Fluids and Structures, 75, 45-76. [27]Zhao, X., Liu, Y., Hua, L., Mao, H. (2016). Finite element analysis and topology optimization of a 12000 KN fine blanking press frame. Structural and Multidisciplinary Optimization, 54, 375-389. [28]Bendsøe, M. P., & Sigmund, O. (1999). Material interpolation schemes in topology optimization. Archive of applied Mechanics, 69, 635-654. [29]Munk, D. J., Auld, D. J., Steven, G. P., Vio, G. A. (2019). On the benefits of applying topology optimization to structural design of aircraft components. Structural and Multidisciplinary Optimization, 60, 1245-1266. [30]Sharma, A., Thapa, S., Goel, B., Kumar, R., Singh, T. (2023). Structural analysis and optimization of machine structure for the measurement of cutting force for wood. Alexandria Engineering Journal, 64, 833-846. [31]Wang, M. Y., Wang, X., & Guo, D. (2003). A level set method for structural topology optimization. Computer Methods in Applied Mechanics and Engineering, 192(1-2), 227-246. [32]Lim, J., You, C., & Dayyani, I. (2020). Multi-objective topology optimization and structural analysis of periodic spaceframe structures. Materials & Design, 190, 108552. [33]Skewness 網格品質參考資料,取自ANSYS help 網頁: https://ansyshelp.ansys.com/線上檢索日期:2023年3月11日 [34]Orthogonal 網格品質參考資料,取自ANSYS help 網頁: https://ansyshelp.ansys.com/,線上檢索日期:2023年3月11日 [35]Bendsøe, M. P., Sigmund, O. (1999). Material interpolation schemes in topology optimization. Archive of Applied Mechanics, 69, 635-654. [36]Liu, J., Ma, Y. (2016). A survey of manufacturing oriented topology optimization methods. Advances in Engineering Software, 100, 161-175. [37]Huang, X., Xie, Y. M. (2010). A further review of ESO type methods for topology optimization. Structural and Multidisciplinary Optimization, 41, 671-683. [38]網格種類設定參考資料,取自網頁: https://www.mm.bme.hu/~gyebro/files/ans_help_v182/ans_elem/Hlp_E_SOLID1 87.html ,線上檢索日期:2023 年 3 月 11 日 [39]結構材質參考資料,取自 MatWeb網頁: https://www.matweb.com/index.aspx/, 線上檢索日期:2023 年 3 月 11 日 [40]噪音科普專欄【 振 動模態】 (2017),取 自噪音產學技術 聯 盟網頁: http://aitanvh.blogspot.com/2017/05/blog-post_16.html,線上檢索日期:2023 年 3 月 11 日 [41]傳統機械式C型曲軸沖床 (2017),取自協易機械工業股份有限公司網頁: https://www.seyi.com/zh-tw/,線上檢索日期:2023 年 3 月 11 日
|