|
[1] X. Zeng, M. Li, D. Abd El-Hady, W. Alshitari, A. S. Al-Bogami, J. Lu, K. Amine, Commercialization of Lithium Battery Technologies for Electric Vehicles, Adv. Energy Mater. 9 (2019), 1900161. https://doi.org/10.1002/aenm.201900161 [2] A. González, E. Goikolea, J. A. Barrena, R. Mysyk, Review on supercapacitors: Technologies and materials, Renew. Sust. Energ. Rev. 58 (2016), 1189-1206. https://doi.org/10.1016/j.rser.2015.12.249 [3] X. Li, B. Wei, Supercapacitors based on nanostructured carbon, Nano Energy. 2 (2013), 159-173. https://doi.org/10.1016/j.nanoen.2012.09.008 [4] K. K. Patel, T. Singhal, V. Pandey, T. P. Sumangala, M. S. Sreekanth, Evolution and recent developments of high performance electrode material for supercapacitors: A review, J. Energy Storage. 44 (2021), 103366. https://doi.org/10.1016/j.est.2021.103366 [5] G. S. Gund, D. P. Dubal, S. B. Jambure, S. S. Shinde, C. D. Lokhande, Temperature influence on morphological progress of Ni(OH)2 thin films and its subsequent effect on electrochemical supercapacitive properties, J. Mater. Chem. A. 1 (2013), 4793-4803. https://doi.org/10.1039/C3TA00024A [6] T. M. Wu, S. H. Lin, Characterization and electrical properties of polypyrrole/multiwalled carbon nanotube composites synthesized by in situ chemical oxidative polymerization, J. Polym. Sci. B Polym. Phys. Phys. 44 (2006), 1413-1418. https://doi.org/10.1002/polb.20809 [7] D. P. Dubal, C. D. Lokhande, Significant improvement in the electrochemical performances of nano-nest like amorphous MnO2 electrodes due to Fe doping, Ceram. Int. 39 (2013), 415-423. https://doi.org/10.1016/j.ceramint.2012.06.042 [8] T. Brousse, D. Bélanger, J. W. Long, To Be or Not To Be Pseudocapacitive?, J. Electrochem. Soc. 162 (2015), A5185. https://doi.org/10.1149/2.0201505jes [9] A. G. Pandolfo, A. F. Hollenkamp, Carbon properties and their role in supercapacitors, J. Power Sources. 157 (2006), 11-27. https://doi.org/10.1016/j.jpowsour.2006.02.065 [10] I. L. Ikhioya, E. U. Onoh, A. C. Nkele, B. C. Abor, B. C. N. Оbitte, M. Maaza, F. I. Ezema, The The Green Synthesis of Copper Oxide Nanoparticles Using the Moringa Oleifera Plant and its Subsequent Characterization for Use in Energy Storage Applications, East Eur. J. Phys. (2023), 162-172. https://doi.org/10.26565/2312-4334-2023-1-20 [11] T. Pasang, A. S. Budiman, J. C. Wang, C. P. Jiang, R. Boyer, J. Williams, W. 19 Z. Misiolek, Additive manufacturing of titanium alloys – Enabling remanufacturing of aerospace and biomedical components, Microelectron Eng. 270 (2023), 111935. https://doi.org/10.1016/j.mee.2022.111935 [12] M. D. Bambach, D. Seifert, I. Sizova, Intensive Forming of Grade 5 Titanium Bars with Increased Performance for Aerospace Applications, Procedia Manuf. 47 (2020), 288-294. https://doi.org/10.1016/j.promfg.2020.04.229 [13] K. Azad, M. A. Chowdhury, M. A. Islam, N. Hossain, S. K. Nondy, M. R. Ahmad, M. M. Rana, Synthesis and characterization of titanium silver composite for dental applications, Results in Surf. Interfaces. (2023), 100162. https://doi.org/10.1016/j.rsurfi.2023.100162 [14] V. V. Buranych, A. D. Pogrebnjak, M. Pogorielov, K. Diedkova, D. Aubakirova, I. Savitskaya, A. I. Kupchishin, N. Kulenova, Characterization, mechanical and biomedical properties of titanium oxynitride coating, Ceram. Int. 49 (2023), 28167-28174. https://doi.org/10.1016/j.ceramint.2023.06.070 [15] I. J. Gómez, M. Díaz-Sánchez, N. Pizúrová, L. Zajíčková, S. Prashar, S. Gómez-Ruiz, Crystalline F-doped titanium dioxide nanoparticles decorated with graphene quantum dots for improving the photodegradation of water pollutants, J. Photochem. Photobiol. A. 443 (2023), 114875. https://doi.org/10.1016/j.jphotochem.2023.114875 [16] M. Palanivel, P. Sai, L. Edalacheruvu, S. R. Pillai, N. Usmaniya, R. K. Lingamaneni, R. Nagumothu, Development of surface modified titanium alloy as a promising photocatalyst for textile waste water treatment, J. Alloys Compd. 952 (2023), 169906. https://doi.org/10.1016/j.jallcom.2023.169906 [17] S. Sepahvand, A. Ashori, M. Jonoobi, Cellulose nanofiber aerogels modified with titanium dioxide nanoparticles as high-performance nanofiltration materials, Int. J. Biol. Macromol. (2023), 128204. https://doi.org/10.1016/j.ijbiomac.2023.128204 [18] U. S. Meda, K. Vora, Y. Athreya, U. A. Mandi, Titanium dioxide based heterogeneous and heterojunction photocatalysts for pollution control applications in the construction industry, Process. Saf. Environ. Prot. 161 (2022), 771-787. https://doi.org/10.1016/j.psep.2022.03.066 [19] M. V. Vaudagna, V. Aiassa, A. Marcotti, M. F. Pince Beti, M. F. Constantín, M. F. Pérez, A. Zoppi, M. C. Becerra, M. J. Silvero C, Titanium Dioxide Nanoparticles in sunscreens and skin photo-damage. Development, synthesis and characterization of a novel biocompatible alternative based on their in vitro and in vivo study, J. Photochem. Photobiol. 15 (2023), 100173. https://doi.org/10.1016/j.jpap.2023.100173 [20] P. J. Lu, S. C. Huang, Y. P. Chen, L. C. Chiueh, D. Y. C. Shih, Analysis of 20 titanium dioxide and zinc oxide nanoparticles in cosmetics, J. Food Drug Anal. 23 (2015), 587-594. https://doi.org/10.1016/j.jfda.2015.02.009 [21] E. Swatsitang, S. Nonglek, A. Karaphun, S. Putjuso, S. Nijpanich, T. Putjuso, Synthesis, characterization and enhancing efficiency of composite CuO2/CuO nanostructures deposited on porous activated carbon for supercapacitors electrode applications, Surf. Interfaces. 42 (2023), 103501. https://doi.org/10.1016/j.surfin.2023.103501 [22] A. A. Mohammed, C. Chen, Z. Zhu, Green and high performance all-solidstate supercapacitors based on MnO2/Faidherbia albida fruit shell derived carbon sphere electrodes, J. Power Sources. 417 (2019), 1-13. https://doi.org/10.1016/j.jpowsour.2019.02.003 [23] A. Arjunan, S. Ramasamy, J. Kim, S. K. Kim, Co3O4 nanoparticles-embedded nitrogen-doped porous carbon spheres for high-energy hybrid supercapacitor electrodes, J. Energy Storage. 68 (2023), 107758. https://doi.org/10.1016/j.est.2023.107758 [24] J. Wang, F. Zheng, M. Li, D. Jia, X. Mao, J. Fu, P. Hu, Q. Zhen, Y. Yu, Facile preparation of porous single crystal NiO nanoflake array directly grown on nickel foam for supercapacitive electrode material, J. Alloys Compd. 913 (2022), 165280. https://doi.org/10.1016/j.jallcom.2022.165280 [25] A. Deshpande, S. Rawat, I. M. Patil, S. Rane, T. Bhaskar, S. B. Ogale, S. Hotha, Converting renewable saccharides to heteroatom doped porous carbons as supercapacitor electrodes, Carbon. 214 (2023), 118368. https://doi.org/10.1016/j.carbon.2023.118368 [26] E. Taer, N. Yanti, A. Apriwandi, A. Ismardi, R. Taslim, Novel O, P, S selfdoped with 3D hierarchy porous carbon from aromatic agricultural waste via H3PO4 activation for supercapacitor electrodes, Diam. Relat. Mater. 140 (2023), 110415. https://doi.org/10.1016/j.diamond.2023.110415 [27] R. Taslim, A. Apriwandi, E. Taer, Novel Moringa oleifera Leaves 3D Porous Carbon-Based Electrode Material as a High-Performance EDLC Supercapacitor, ACS Omega. 7 (2022), 36489-36502. https://doi.org/10.1021/acsomega.2c04301 [28] S. Zhang, X. Ma, Y. Du, Y. Li, J. Lin, S. Chen, Wheat-bran-based hierarchically porous biochar as electrode materials for supercapacitors, Adv. Powder Technol. 34 (2023), 104221. https://doi.org/10.1016/j.apt.2023.104221 [29] A. Arjunan, S. K. Kim, Bioinspired Sustainable Sheetlike Porous Carbon Derived from Cassia fistula Flower Petal as an Electrode for High- Performance Supercapacitors, Energy Fuels. 36 (2022), 9337-9346. 21 https://doi.org/10.1021/acs.energyfuels.2c02228 [30] S. R. Mangishetti, M. Kamaraj, R. Sundara, Novel favorably interconnected N-doped porous carbon hybrid electrode materials for high energy density supercapacitors, Int. J. Hydrog. Energy. 48 (2023), 33442-33455. https://doi.org/10.1016/j.ijhydene.2023.05.112 [31] S. K. Ray, B. Pant, M. Park, B. P. Bastakoti, Rice husk-derived sodium hydroxide activated hierarchical porous biochar as an efficient electrode material for supercapacitors, J. Anal. Appl. Pyrolysis. 175 (2023), 106207. https://doi.org/10.1016/j.jaap.2023.106207 [32] S. De, C. K. Maity, M. J. Kim, G. C. Nayak, Tin(IV) selenide anchoredbiowaste derived porous carbon-Ti3C2Tx (MXene) nanohybrid: An ionic electrolyte enhanced high performing flexible supercapacitor electrode, Electrochim. Acta. 463 (2023), 142811. https://doi.org/10.1016/j.electacta.2023.142811 [33] M. J. Dos Santos Costa, G. Dos Santos Costa, R. Da Silva Santos, Investigation of supercapacitor properties using iron tungsten porous electrode in neutral aqueous electrolyte, Nano-Structures & Nano-Objects. 36 (2023), 101060. https://doi.org/10.1016/j.nanoso.2023.101060 [34] M. Devendran, S. K. Kandasamy, S. Palanisamy, S. Selvaraj, R. Vetrivel, R. Selvarajan, M. Govindasamy, K. Kandasamy, Preparation of Chemically Modified Porous Carbon Networks Derived from Citrus Sinensis Flavedos as Electrode Material for Supercapacitor, Int. J. Electrochem. Sci. 15 (2020), 4379-4387. https://doi.org/10.20964/2020.05.08 [35] H. Yu, L. Zhou, Y. Liu, X. Ao, J. Ouyang, Z. Liu, A. A. Adesina, Biocarbon/polyaniline nanofiber electrodes with high hybrid capacitance and hierarchical porous structure for U(VI) electrosorption, Desalination. 564 (2023), 116773. https://doi.org/10.1016/j.desal.2023.116773 [36] J. Y. Shieh, S. H. Zhang, C. H. Wu, H. H. Yu, A facile method to prepare a high performance solid-state flexible paper-based supercapacitor, Appl. Surf. Sci. 313 (2014), 704-710. https://doi.org/10.1016/j.apsusc.2014.06.059 [37] J. Y. Shieh, C. H. Wu, S. Y. Tsai, H. H. Yu, Fabrication and characterization of a sandpaper-based flexible energy storage, Appl. Surf. Sci. 364 (2016), 21-28. https://doi.org/10.1016/j.apsusc.2015.11.152 [38] J. Y. Shieh, S. Y. Tsai, B. Y. Li, H. H. Yu, High-performance flexible supercapacitor based on porous array electrodes, Mater. Chem. Phys. 195 (2017), 114-122. https://doi.org/10.1016/j.matchemphys.2017.04.034 [39] P. Navalpotro Molina, J. Palma, M. Anderson, R. Marcilla, High performance hybrid supercapacitors by using para-Benzoquinone ionic liquid redox 22 electrolyte, J. Power Sources. 306 (2016), 711-717. https://doi.org/10.1016/j.jpowsour.2015.12.103 [40] B. J. Choudhury, H. H. Muigai, P. Kalita, V. S. Moholkar, Biomass blend derived porous carbon for aqueous supercapacitors with commercial-level mass loadings and enhanced energy density in redox-active electrolyte, Appl. Surf. Sci. 601 (2022), 154202. https://doi.org/10.1016/j.apsusc.2022.154202 [41] A. F. Kanta, M. Poelman, A. Decroly, Electrochemical characterisation of TiO2 nanotube array photoanodes for dye-sensitized solar cell application, Sol. Energy Mater. Sol. Cells. 133 (2015), 76-81. https://doi.org/10.1016/j.solmat.2014.10.029 [42] C. N. R. Rao, S. R. Yoganarasimhan, P. A. Faeth, Studies on the brookiterutile transformation, Trans. Faraday Soc. 57 (1961), 504-510. https://doi.org/10.1039/TF9615700504 [43] R. D. Shannon, J. A. Pask, Kinetics of the Anatase-Rutile Transformation, J. Am. Ceram. Soc. 48 (1965), 391-398. https://doi.org/10.1111/j.1151- 2916.1965.tb14774.x [44] N. Wetchakun, B. Incessungvorn, K. Wetchakun, S. Phanichphant, Influence of calcination temperature on anatase to rutile phase transformation in TiO2 nanoparticles synthesized by the modified sol–gel method, Mater. Lett. 82 (2012), 195-198. https://doi.org/10.1016/j.matlet.2012.05.092 [45] M. Balamurugan, M. Silambarasan, S. Saravanan, T. Soga, Synthesis of anatase and rutile mixed phase titanium dioxide nanoparticles using simple solution combustion method, Physica. B Condens. Matter. 638 (2022), 413843. https://doi.org/10.1016/j.physb.2022.413843 [46] T. T. Loan, V. H. Huong, N. T. Huyen, L. Van Quyet, N. A. Bang, N. N. Long, Anatase to rutile phase transformation of iron-doped titanium dioxide nanoparticles: The role of iron content, Opt. Mater. 111 (2021), 110651. https://doi.org/10.1016/j.optmat.2020.110651 [47] F. Lufrano, P. Staiti, M. Minutoli, Evaluation of nafion based double layer capacitors by electrochemical impedance spectroscopy, J. Power Sources. 124 (2003), 314-320. https://doi.org/10.1016/S0378-7753(03)00589-5 [48] S. H. Mujawar, S. B. Ambade, T. Battumur, R. B. Ambade, S.-H. Lee, Electropolymerization of polyaniline on titanium oxide nanotubes for supercapacitor application, Electrochim. Acta. 56 (2011), 4462-4466. https://doi.org/10.1016/j.electacta.2011.02.043 [49] C. T. Hsieh, C. C. Chang, W. Y. Chen, W. M. Hung, Electrochemical capacitance from carbon nanotubes decorated with titanium dioxide nanoparticles in acid electrolyte, J. Phys. Chem. Solids. 70 (2009), 916-921. 23 https://doi.org/10.1016/j.jpcs.2009.04.012 [50] C. Shi, I. Zhitomirsky, Electrodeposition and capacitive behavior of films for electrodes of electrochemical supercapacitors, Nanoscale Res. Lett. 5 (2010), 518-23. https://doi.org/10.1007/s11671-009-9519-z [51] W. Zhang, X. Li, H. Kang, B. Yang, C. Sun, Z. Li, Redox-active 7- aminoindole and carbon nanotubes co-modified reduced graphene oxide for Zn-ion hybrid capacitors with excellent energy density and super-long cycling stability, J. Power Sources. 562 (2023), 232789. https://doi.org/10.1016/j.jpowsour.2023.232789 [52] O. Borodin, L. Suo, M. Gobet, X. Ren, F. Wang, A. Faraone, J. Peng, M. Olguin, M. Schroeder, M. S. Ding, E. Gobrogge, A. Von Wald Cresce, S. Munoz, J. A. Dura, S. Greenbaum, C. Wang, K. Xu, Liquid Structure with Nano-Heterogeneity Promotes Cationic Transport in Concentrated Electrolytes, ACS Nano. 11 (2017), 10462-10471. https://doi.org/10.1021/acsnano.7b05664 [53] B. Yao, M. Li, J. Zhang, L. Zhang, Y. Song, W. Xiao, A. Cruz, Y. Tong, Y. Li, TiN Paper for Ultrafast-Charging Supercapacitors, Nanomicro Lett. 12 (2019), 3. https://doi.org/10.1007/s40820-019-0340-7 [54] G. M. K. Tolba, M. Motlak, A. M. Bastaweesy, E. A. Ashour, W. Abdelmoez, M. El-Newehy, N. a. M. Barakat, Synthesis of Novel Fe-doped Amorphous TiO2/C Nanofibers for Supercapacitors Applications, Int. J. Electrochem. Sci. 10 (2015), 3117-3123. https://doi.org/10.1016/S1452-3981(23)06524-0 [55] K. Mensah-Darkwa, F. O. Agyemang, S. Akromah, E. K. Arthur, F. Abdallah, E. Gikunoo, A comparative study on the performance of activated carbon electrodes and activated carbon/titanium dioxide nanotubes hybrid electrodes, Scientific African. 12 (2021), e00786. https://doi.org/10.1016/j.sciaf.2021.e00786 [56] X. Lu, G. Wang, T. Zhai, M. Yu, S. Xie, Y. Ling, C. Liang, Y. Tong, Y. Li, Stabilized TiN Nanowire Arrays for High-Performance and Flexible Supercapacitors, Nano Lett. 12 (2012), 5376-5381. https://doi.org/10.1021/nl302761z [57] M. Selvakumar, D. K. Bhat, Microwave synthesized nanostructured TiO2- activated carbon composite electrodes for supercapacitor, Appl. Surf. Sci. 263 (2012), 236-241. https://doi.org/10.1016/j.apsusc.2012.09.036 [58] A. Ramadoss, S. J. Kim, Vertically aligned TiO2 nanorod arrays for electrochemical supercapacitor, J. Alloys Compd. 561 (2013), 262-267. https://doi.org/10.1016/j.jallcom.2013.02.015 [59] M. Z. U. Shah, M. Sajjad, H. Hou, S. U. Rahman, A. Shah, Copper sulfide 24 nanoparticles on titanium dioxide (TiO2) nanoflakes: A new hybrid asymmetrical Faradaic supercapacitors with high energy density and superior lifespan, J. Energy Storage. 55 (2022), 105651. https://doi.org/10.1016/j.est.2022.105651 [60] T. Chen, M. Li, S. Song, P. Kim, J. Bae, Biotemplate preparation of multilayered TiC nanoflakes for high performance symmetric supercapacitor, Nano Energy. 71 (2020), 104549. https://doi.org/10.1016/j.nanoen.2020.104549 [61] A. Arya, M. Iqbal, S. Tanwar, A. Sharma, A. L. Sharma, V. Kumar, Mesoporous carbon/titanium dioxide composite as an electrode for symmetric/asymmetric solid‐state supercapacitors, Mater. Sci. Eng. B. 285 (2022), 115972. https://doi.org/10.1016/j.mseb.2022.115972 [62] V. H. Pham, T. D. Nguyen-Phan, X. Tong, B. Rajagopalan, J. S. Chung, J. H. Dickerson, Hydrogenated TiO2@reduced graphene oxide sandwich-like nanosheets for high voltage supercapacitor applications, Carbon. 126 (2018), 135-144. https://doi.org/10.1016/j.carbon.2017.10.026 [63] P. Mouchani, R. Sarraf-Mamoory, H. Aghajani, I. Ahadzadeh, Low mass loading of graphene quantum dots on titanium nitride nanotube arrays for boosting capacity and operating voltage of symmetric supercapacitor in an aqueous electrolyte, J. Energy Storage. 73 (2023), 108858. https://doi.org/10.1016/j.est.2023.108858
|