|
壹、環境逆境對於束型針葉珊瑚形態與生理的影響… 1.Aihara, Y., Maruyama, S., Baird, A. H., Iguchi, A., Takahashi, S., Minagawa, J. (2019). Green fluorescence from cnidarian hosts attracts symbiotic algae. Proc Natl Acad Sci U S A. 116:2118-2123. 2.Alemu I, J. B., Clement, Y. (2014). Mass coral bleaching in 2010 in the southern Caribbean. PloS one. 9:e83829. 3.Alieva, N. O., Konzen, K. A., Field, S. F., Meleshkevitch, E. A., Hunt, M. E., Beltran-Ramirez, V., Miller, D. J., Wiedenmann, J., Salih, A., Matz, M. V. (2008). Diversity and evolution of coral fluorescent proteins. PloS one. 3:e2680. 4.Allemand, D., Tambutté, É., Zoccola, D., Tambutté, S. (2011). Coral Calcification, Cells to Reefs. In: Dubinsky Z., Stambler N. (eds) Coral Reefs: An Ecosystem in Transition. Springer, Dordrecht. 5.Amir, F., Yam, W. S., & Koay, Y. C. (2012). Chemical constituents and biological activities of the genus Subergorgia. Pharmacogn Rev. 6:74-80. 6.Anthony, K.R.N., Hoegh-Guldberg, O. (2003). Variation in coral photosynthesis, respiration and growth characteristics in contrasting light microhabitats: an analogue to plants in forest gaps and understoreys? Funct Ecol. 17:246-259. 7.Baker, M. E. (2006). The genetic response to Snowball Earth: role of HSP90 in the Cambrian explosion. Geobiology. 4:11-14. 8.Barshis, D. J., Ladner, J. T., Oliver, T. A., Seneca, F. O., Traylor‐Knowles, N., Palumbi, S. R. (2013). Genomic basis for coral resilience to climate change. Proc. Natl. Acad. Sci. U.S.A. 110:1387-1392. 9.Bastolla, U., Fortuna, M. A., Pascual-García, A., Ferrera, A., Luque, B., Bascompte, J. (2009). The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature. 458:1018-1020. 10.Bettencourt, B. R., Feder, M. E. (2001). Hsp70 duplication in the Drosophila melanogaster species group: how and when did two become five? Mol Biol Evol. 18:1272-1282. 11.Blackall, L. L., Wilson, B., van Oppen, M. J. (2015). Coral-the world's most diverse symbiotic ecosystem. Mol Ecol. 24:5330-5347. 12.Bollati, E., D'Angelo, C., Alderdice, R., Pratchett, M., Ziegler, M., Wiedenmann, J. (2020). Optical Feedback Loop Involving Dinoflagellate Symbiont and Scleractinian Host Drives Colorful Coral Bleaching. Curr Biol. 30:2433-2445. 13.Brown, B. E., Downs, C. A., Dunne, R. P., Gibb, S. W. (2002). Exploring the basis of thermotolerance in the reef coral Goniastrea aspera. Mar. Ecol. Prog. Ser. 242:119-129. 14.Burke, L., Reytar, K., Spalding, M., Perry, A. (2011). Reefs at Risk Revisited. Washington, DC: World Resources Institute. 15.Cesar, H. , Burke, L., Pet-Soede, L. (2003). The Economics of Worldwide Coral Reef Degradation. Arnhem, the Netherlands: Cesar Environmental Economics Consulting. 16.Chambers, J., Angulo, A., Amaratunga, D., Guo, H., Jiang, Y., Wan, J. S., Bittner, A., Frueh, K., Jackson, M. R., Peterson, P. A., Erlander, M. G., & Ghazal, P. (1999). DNA microarrays of the complex human cytomegalovirus genome: profiling kinetic class with drug sensitivity of viral gene expression. J Virol. 73:5757-5766. 17.Cheetham, M. E., Caplan, A. J. (1998). Structure, function and evolution of DnaJ: conservation and adaptation of chaperone function. Cell Stress Chaperones. 3:28-36. 18.Clark, M. S., Peck, L. S. (2009). HSP70 heat shock proteins and environmental stress in Antarctic marine organisms: A mini-review. Mar Genomics. 2:11-18. 19.Colombo-Pallotta, M.F., Rodríguez-Román, A., and Iglesias-Prieto, R. (2010). Calcification in bleached and unbleached Montastraea faveolata: evaluating the role of oxygen and glycerol. Coral Reefs. 29:899-907. 20.Császár, N. B., Ralph, P. J., Frankham, R., Berkelmans, R., van Oppen, M. J. (2010). Estimating the potential for adaptation of corals to climate warming. PloS one. 5:e9751. 21.Cziesielski, M. J., Liew, Y. J., Cui, G., Schmidt‐Roach, S., Campana, S., Marondedze, C., Aranda, M. (2018). Multi-omics analysis of thermal stress response in a zooxanthellate cnidarian reveals the importance of associating with thermotolerant symbionts. Proc Biol Sci. 285:2017-2654. 22.D’Angelo, C., Denzel, A., Vogt, A., Matz, M. V., Oswald, F., Salih, A., Nienhaus, G. U., Wiedenmann, J. (2008). Blue light regulation of host pigment in reef-building corals. Mar Ecol Prog Ser. 364:97-106 23.D’Angelo, C., Smith, E. G., Oswald, F., Burt, J., Tchernov, D., Wiedenmann, J. (2012). Locally accelerated growth is part of the innate immune response and repair mechanisms in reef-building corals as detected by green fluorescent protein (GFP)-like pigments. Coral Reefs. 31:1045-1056. 24.Daly, M., Brugler, M. R., Cartwright, P., Collins, A. G., Dawson, M. N., Fautin, D. G., France, S. C., McFadden, C. S., Opresko, D. M., Rodriguez, E., Romano, S., Stake, J. (2007). The phylum Cnidaria: A review of phylogenetic patterns and diversity 300 years after Linnaeus. Zootaxa. 1668: 1-766. 25.D'Ambra, I., & Lauritano, C. (2020). A Review of Toxins from Cnidaria. Marine drugs. 18:507. 26.De'ath, G., Fabricius, K. E., Sweatman, H., Puotinen, M. (2012). The 27-year decline of coral cover on the Great Barrier Reef and its causes. Proc. Natl. Acad. Sci. U.S.A. 109:17995-17999. 27.Desalvo, M. K., Voolstra, C. R., Sunagawa, S., Schwarz, J. A., Stillman, J. H., Coffroth, M. A., Szmant, A. M., Medina, M., (2008). Differential gene expression during thermal stress and bleaching in the Caribbean coral Montastraea faveolata. Mol. Ecol. 17:3952-3971. 28.DeSalvo, MK., Estrada, A., Sunagawa, S., Medina, M. (2012). Transcriptomic responses to darkness stress point to common coral bleaching mechanisms. Coral Reefs. 31:215-228. 29.Douglas A. E. (2003). Coral bleaching--how and why?. Marine pollution bulletin. 46:385-392. 30.Dove, S. (2004). Scleractinian corals with photoprotective host pigments are hypersensitive to thermal bleaching. Mar. Ecol. Prog. Ser. 272:99-116. 31.Downs, C. A., Mueller, E., Phillips, S., Fauth, J. E., Woodley, C. M. (2000). A molecular biomarker system for assessing the health of coral (Montastraea faveolata) during heat stress. Mar. Biotechnol. 2:533-544. 32.Ellison, M. A., Ferrier, M. D., Carney, S. L. (2017). Salinity stress results in differential Hsp70 expression in the Exaiptasia pallida and Symbiodinium symbiosis. Mar Environ Res. 132:63-67. 33.Enríquez, S., Méndez, E.R., Iglesias-Prieto, R. (2005). Multiple scattering on coral skeletons enhances light absorption by symbiotic algae. Limnol Oceanogr. 50:1025-1032. 34.Feder, M. E., Hofmann, G. E. (1999). Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol. 61:243-282. 35.Fitt, W. K., Warner, M. E. (1995). Bleaching Patterns of Four Species of Caribbean Reef Corals. Biol Bull. 189:298-307. 36.Fitt, W.K., Brown, B.E., Warner, M.E., Dunne, R.P. (2001). Coral bleaching: interpretation of thermal tolerance limits and thermal thresholds in tropical corals. Coral Reefs 20:51-65. 37.Franzellitti, S., Airi, V., Calbucci, D., Caroselli, E., Prada, F., Voolstra, C. R., Mass, T., Falini, G., Fabbri, E., & Goffredo, S. (2018). Transcriptional response of the heat shock gene hsp70 aligns with differences in stress susceptibility of shallow-water corals from the Mediterranean Sea. Mar Environ Res. 140:444-454. 38.Gittins, J. R., D'Angelo, C., Oswald, F., Edwards, R. J., Wiedenmann, J. (2015). Fluorescent protein-mediated colour polymorphism in reef corals: multicopy genes extend the adaptation/acclimatization potential to variable light environments. Mol Ecol. 24:453-465. 39.Gleason, D.F., Wellington, G.M. (1993). Ultraviolet radiation and coral bleaching. Nature 365:836-838. 40.Grottoli, A. G., Warner, M. E., Levas, S. J., Aschaffenburg, M. D., Schoepf, V., McGinley, M., Baumann, J., Matsui, Y. (2014). The cumulative impact of annual coral bleaching can turn some coral species winners into losers. Glob Chang Biol. 20:3823-3833. 41.Guillard, R. R. L., Ryther, J.H. (1962). Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea Cleve. Can. J. Microbiol. 8:229-239. 42.Gunter, H. M., Degnan, B. M. (2007). Developmental expression of Hsp90, Hsp70 and HSF during morphogenesis in the vetigastropod Haliotis asinina. Dev Genes Evol. 217: 603-612. 43.Henderson, J. N., Remington, S. J. (2005). Crystal structures and mutational analysis of amFP486, a cyan fluorescent protein from Anemonia majano. Proc. Natl. Acad. Sci. U.S.A. 102:12712-12717. 44.Hoegh-Guldberg, O. (1999). Climate change, coral bleaching and the future of the world's coral reefs. Mar. Freshw. Res. 50:839-866. 45.Hoegh‐Guldberg, O. (1999). Climate change, coral bleaching and the future of the world’s coral reefs. Mar. Freshw. Res. 50:839. 46.Iluz, D., & Dubinsky, Z. (2015). Coral photobiology: new light on old views. Zoology (Jena). 118:71-78. 47.Iwama, G. K., Afonso, L. O., Todgham, A., Ackerman, P., Nakano, K. (2004). Are hsps suitable for indicating stressed states in fish?. J Exp Biol . 207:15-19. 48.Jarett, J. K., MacManes, M. D., Morrow, K. M., Pankey, M. S., Lesser, M. P. (2017). Comparative Genomics of Color Morphs In the Coral Montastraea cavernosa. Sci Rep. 7:16039. 49.Jeffrey, S. W., HumphreyNew, G. (1975). spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biocbem. Pbysiol. Pflanzen. 167:191-194. 50.Kabani, M., Martineau, C. N. (2008). Multiple hsp70 isoforms in the eukaryotic cytosol: mere redundancy or functional specificity?. Curr Genomics. 9:338-248. 51.Kenkel, C. D., Meyer, E., Matz, M. V. (2013). Gene expression under chronic heat stress in populations of the mustard hill coral (Porites astreoides) from different thermal environments. Mol. Ecol. 22:4322-4334. 52.Kenkel, C.D., Aglyamova, G., Alamaru, A., Bhagooli, R., Capper, R., Cunning, R., DeVillers, A., Haslun, J.A., Hédouin, L., Keshavmurthy, S., Kuehl, K.A., Mahmoud, H., McGinty, E.S., Montoya-Maya, P.H., Palmer, C.V., Pantile, R., Sánchez, J.A., Schils, T., Silverstein, R.N., Squiers, L.B., Tang, P.C., Goulet, T.L., Matz, M.V., (2011). Development of gene expression markers of acute heat-light stress in reef-building corals of the genus Porites. PLoS One. 6:e26914. 53.Kirk, J.T.O. (2010). Light and photosynthesis in aquatic ecosystems. New York: Cambridge University Press. 54.Krone, P. H., Evans, T. G., Blechinger, S. R. (2003). Heat shock gene expression and function during zebrafish embryogenesis. Semin. Cell Dev. Biol. 14: 267-274. 55.LaJeunesse, T. C., Parkinson, J. E., Gabrielson, P. W., Jeong, H. J., Reimer, J. D., Voolstra, C. R., Santos, S. R. (2018). Systematic Revision of Symbiodiniaceae Highlights the Antiquity and Diversity of Coral Endosymbionts.Curr Biol . 28:2570-2580. 56.Leggat, W., Seneca, F., Wasmund, K., Ukani, L., Yellowlees, D., Ainsworth, T.D., (2011). Differ ential responses of the coral host and their algal symbiont to thermal stress. PloS ONE. 6:e26687. 57.Lesser, K. B., & Garcia, F. A. (1997). Association between polycystic ovary syndrome and glucose intolerance during pregnancy. J. Matern.-Fetal Neonatal Med. 6:303-307. 58.Lesser, M.P. (2000). Depth-dependent photoacclimatization to solar ultraviolet radiation in the Caribbean coral Montastraea faveolata. Mar. Ecol. Prog. Ser. 192:137-151. 59.Lesser, M.P., Mazel, C., Phinney, D., Yentsch, C.S. (2000). Light absorption and utilization by colonies of the congeneric hermatypic corals Montastraea faveolata and Montastraea cavernosa. Limnol. Oceanogr. 45:76-86. 60.Lesser, M.P., Slattery, M., Leichter, J.J. (2009). Ecology of mesophotic coral reefs. J. Exp. Mar. Biol. Ecol. 375:1-8. 61.Levy, O., Achituv, Y., Yacobi, Y.Z., Stambler, N., Dubinsky, Z. (2006). The impact of spectral composition and light periodicity on the activity of two antioxidant enzymes (SOD and CAT) in the coral Favia favus. J. Exp. Mar. Biol. Ecol. 328:35-46. 62.Li, Z., Srivastava, P. (2004). Heat-shock proteins. Curr Protoc Immunol. 1:Appendix 1T. 63.Lin, B. L., Wang, J. S., Liu, H. C., Chen, R. W., Meyer, Y., Barakat, A., Delseny, M. (2001). Genomic analysis of the Hsp70 superfamily in Arabidopsis thaliana. Cell Stress Chaperones. 6:201-208. 64.Louis, Y. D., Bhagooli, R., Kenkel, C. D., Baker, A. C., & Dyall, S. D. (2017). Gene expression biomarkers of heat stress in scleractinian corals: Promises and limitations. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 191:63-77. 65.Maor‐Landaw, K., Karako-Lampert, S., Waldman Ben-Asher, H., Goffredo, S., Falini, G., Dubinsky, Z., Levy, O. (2014). Gene expression profiles during short-term heat stress in the red sea coral Stylophora pistillata. Glob Chang Biol. 20:3026-3035. 66.Maor‐Landaw, K., Levy, O. (2016). Gene expression profiles during short-term heat stress; branching vs. massive Scleractinian corals of the Red Sea. Peerj. 4:e1814. 67.Mass, T., Kline, D. I., Roopin, M., Veal, C. J., Cohen, S., Iluz, D., Levy, O. (2010). The spectral quality of light is a key driver of photosynthesis and photoadaptation in Stylophora pistillata colonies from different depths in the Red Sea. J Exp Biol. 213:4084-4091. 68.Mayer, M. P., Bukau, B. (2005). Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci. 62:670-684. 69.Mayfield, A. B., Tsai, S., & Lin, C. (2019). The Coral Hospital. Biopreserv Biobank. 17:355-369. 70.Mazel, C.H. (1997). Diver-operated instrument for in-situ measurement for spectral fluorescence of benthic marine organisms and substrates. Opt. Eng. 36:2612-2617. 71.Mazel, C.H., Lesser, M.P., Gorbunov, M.Y., Barry, T.M., Farrell, J.H., Wyman, K.D., Falkowski, P.G. (2003). Green-fluorescent proteins in Caribbean corals. Limnol. Oceanogr. 48:402-411. 72.McFadden, C. S., & van Ofwegen, L. P. (2013). Molecular phylogenetic evidence supports a new family of octocorals and a new genus of Alcyoniidae (Octocorallia, Alcyonacea). ZooKeys. 346:59-83. 73.McFadden, C. S., Sánchez, J. A., & France, S. C. (2010). Molecular phylogenetic insights into the evolution of Octocorallia: a review. Integr Comp Biol. 50:389-410. 74.Mcintyre, A.D. (2010). Life in the world's oceans: Diversity, distribution, and abundance.USA: wiley-blackwell. 75.Morin, J. G., Hastings, J. W. (1971). Energy transfer in a bioluminescent system. J Cell Physiol. 77:313-318. 76.Muscatine, L. (1990). The role of symbiotic algae in carbon and energy flux in reef corals. in Ecosystems of the World, ed. Z. Dubinsky. (Amsterdam: Elsevier), 75-87. 77.Nakamura, M., Morita, M., Kurihara, H., Mitarai, S. (2012). Expression of hsp70, hsp90 and hsf1 in the reef coral Acropora digitifera under prospective acidified conditions over the next several decades. Biol. Open. 1:75-81. 78.Norton, J. H., Shepherd, M. A., Long, H. M., Fitt, W. K. (1992). The Zooxanthellal Tubular System in the Giant Clam. Biol Bull. 183:503-506. 79.Novelli, G., Ciccacci, C., Borgiani, P., Papaluca Amati, M., & Abadie, E. (2008). Genetic tests and genomic biomarkers: regulation, qualification and validation. Clin Cases Miner Bone Metab. 5:149-154. 80.Palmer, C. V., Modi, C. K., Mydlarz, L. D. (2009). Coral fluorescent proteins as antioxidants. PloS one, 4:e7298. 81.Palmer, C. V., Roth, M. S., Gates, R. D. (2009). Red fluorescent protein responsible for pigmentation in trematode-infected Porites compressa tissues. Biol. Bull. 216:68-74. 82.Pearse, V. B., Muscatine, L. (1971). Role of symbiotic algae (zooxanthellae) in coral calcification. Biol. Bull. 141, 350-363. 83.Peng, S. E., Luo, Y. J., Huang, H. J., Lee, I. T. (2007). Isolation of tissue layers in hermatypic corals by N-acetylcysteine: Morphological and proteomic examinations. Coral Reefs. 27:133-142. 84.Perez, S., Weis, V. (2006). Nitric oxide and cnidarian bleaching: An eviction notice mediates breakdown of a symbiosis. J. Exp. Biol. 209:2804-2810. 85.Pirkkala, L., Nykänen, P., Sistonen, L. (2001). Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. FASEB J. 15:1118-1131. 86.Polato, N. R., Voolstra, C. R., Schnetzer, J., DeSalvo, M. K., Randall, C. J., Szmant, A. M., Medina, M., & Baums, I. B. (2010). Location-specific responses to thermal stress in larvae of the reef-building coral Montastraea faveolata. PLoS One. 5:e11221. 87.Portune, K. J., Voolstra, C. R., Medina, M., Szmant, A. M. (2010). Development and heat stress-induced transcriptomic changes during embryogenesis of the scleractinian coral Acropora palmata. Mar Genomics. 3:51-62. 88.Robbart, M., Peckol, P., Scordilis, S., Curran, H. (2004). Population recovery and differential heat shock protein expression for the corals Agaricia agaricites and A. tenuifolia in Belize. Mar. Ecol. Prog. Ser. 283:151-160 89.Roberts, C. M., McClean, C. J., Veron, J. E., Hawkins, J. P., Allen, G. R., McAllister, D. E., Mittermeier, C. G., Schueler, F. W., Spalding, M., Wells, F., Vynne, C., Werner, T. B. (2002). Marine biodiversity hotspots and conservation priorities for tropical reefs. Science. 295:1280-1284. 90.Rodriguez‐Lanetty, M., Harii, S., Hoegh‐Guldberg, O. (2009). Early molecular responses of coral larvae to hyperthermal stress. Mol. Ecol. 18:5101-5114. 91.Rosic, N.N., Pernice, M., Dove, S., Dunn, S., Hoegh-Guldberg, O., (2011). Gene expression profiles of cytosolic heat shock proteins Hsp70 and Hsp90 from symbiotic dinoflagellates in response to thermal stress: possible implications for coral bleaching. Cell Stress Chaperones. 16:69-80. 92.Roth M. S. (2014). The engine of the reef: photobiology of the coral-algal symbiosis. Front Microbiol. 5:422. 93.Roth, M. S., Deheyn, D. D. (2013). Effects of cold stress and heat stress on coral fluorescence in reef-building corals. Sci Rep. 3:1-8. 94.Roth, M. S., Latz, M. I., Goericke, R., Deheyn, D. D. (2010). Green fluorescent protein regulation in the coral Acropora yongei during photoacclimation. J Exp Biol. 213:3644-3655. 95.Salih, A., Larkum, A., Cox, G., Kühl, M., Hoegh-Guldberg, O. (2000). Fluorescent pigments in corals are photoprotective. Nature. 408:850-853. 96.Schlichter, D., Weber, W., Fricke, H. (1985). A chromatophore system in the hermatypic, deep-water coral Leptoseris fragilis (Anthozoa: Hexacorallia). Marine Biology. 89:143-147. 97.Seneca, F. O., Forêt, S., Ball, E. E., Smith-Keune, C., Miller, D. J., Oppen, M. J. H., (2010). Patterns of gene expression in a scleractinian coral undergoing natural bleaching. Mar. Biotechnol. 12:594-604. 98.Sharp, V. A., Brown, B. E., Miller, D. (1997). Heat shock protein (hsp 70) expression in the tropical reef coral Goniopora djiboutiensis. J Therm Biol. 22:11-19. 99.Sheppard, C., Rioja-Nieto, R. (2005). Sea surface temperature 1871-2099 in 38 cells in the Caribbean region. Mar Environ Res. 60:389-396. 100.Shick, J. M., Dunlap, W. C. (2002). Mycosporine-like amino acids and related Gadusols: biosynthesis, acumulation, and UV-protective functions in aquatic organisms. Annu Rev Physiol. 64:223-262. 101.Shimomura, O., Johnson, F.H., Saiga, Y. (1962). Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J Cell Comp Physiol. 59:223-239. 102.Simon R. (2011). Genomic biomarkers in predictive medicine: an interim analysis. EMBO Mol Med. 3:429-435. 103.Smith-Keune, C., Dove, S. (2008). Gene expression of a green fluorescent protein homolog as a host-specific biomarker of heat stress within a reef-building coral. Mar. Biotechnol. 10:166-180. 104.Solomon, S. (2007). IPCC (2007): Climate Change The Physical Science Basis. American Geophysical Union Fall Meeting 2007. NY, USA. 105.Sorensen, J. G., Kristensen, T. N., Loeschcke, V. (2003). The evolutionary and ecological role of heat shock proteins. Ecol Lett. 6:1025-1037 106.Souter, P., Bay, L.K., Andreakis, N., Császár, N., Seneca, F.O., van Oppen, M.J.H., (2011). A multilocus, temperature stress-related gene expression profile assay in Acropora millepora, a dominant reef-building coral. Mol. Ecol. Resour. 11:328-334. 107.Spalding, M. D., Ravilious, C., Green, E. P. (2001). World Atlas of Coral Reefs. University of California Press, Berkeley. 108.Stat, M., Carter, D., & Hoegh-Guldberg, O. (2006). The evolutionary history of Symbiodinium and scleractinian hosts-Symbiosis, diversity, and the effect of climate change. Perspect. Plant Ecol. Evol. Syst. 8:23-43. 109.Suryawanshi, V., Talke, I. N., Weber, M., Eils, R., Brors, B., Clemens, S., Krämer, U. (2016). Between-species differences in gene copy number are enriched among functions critical for adaptive evolution in Arabidopsis halleri. BMC Genomics. 17:1034. 110.Swanson, R., Hoegh-Guldberg, O. (1998). Amino acid synthesis in the symbiotic sea anemone Aiptsia pulchella. Mar. Biol. 131:83-93. 111.Takahashi-Kariyazono, S., Gojobori, J., Satta, Y., Sakai, K., Terai, Y. (2016). Acropora digitifera Encodes the Largest Known Family of Fluorescent Proteins that Has Persisted during the Evolution of Acropora Species. Genome Biol Evol. 8:3271-3283.. 112.Takahashi-Kariyazono, S., Sakai, K., Terai, Y. (2018). Presence-Absence Polymorphisms of Highly Expressed FP Sequences Contribute to Fluorescent Polymorphisms in Acropora digitifera. Genome Biol Evol. 10:1715-1729. 113.Takahashi-Kariyazono, S., Satta, Y., Terai, Y. (2015). Genetic diversity of fluorescent protein genes generated by gene duplication and alternative splicing in reef-building corals.Zoological Lett. 1:23. 114.Tutar, L., Tutar, Y. (2010). Heat shock proteins; an overview. Curr Pharm Biotechnol. 11:216-222. 115.van Oppen, M. J., Gates, R. D. (2006). Conservation genetics and the resilience of reef-building corals. Mol Ecol. 15:3863-3883. 116.Veron, J. E. N. (2000). Corals of the World. Australia, Australian Institute of Marine Science, Townsville. 117.Voolstra, C. R., Schnetzer, J., Peshkin, L., Randall, C. J., Szmant, A. M., Medina, M. (2009). Effects of temperature on gene expression in embryos of the coral Montastraea faveolata. BMC Genomics. 10:627. 118.Wahid, A., Gelani, S., Ashraf, M., Foolad, M. R. (2007). Heat tolerance in plants: An overview. Environ Exp Bot. 61:199-223. 119.Wakefield, T. S., Farmer, M. A., Kempf, S. C. (2000). Revised description of the fine structure of in situ "zooxanthellae" genus Symbiodinium. The Biological bulletin. 199:76-84. 120.Walther, G. R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T. J., Fromentin, J. M., Hoegh-Guldberg, O., & Bairlein, F. (2002). Ecological responses to recent climate change. Nature. 416:389-395. 121.Wangpraseurt, D., Larkum, A. W., Franklin, J., Szabó, M., Ralph, P. J., Kühl, M. (2014). Lateral light transfer ensures efficient resource distribution in symbiont-bearing corals. J Exp Biol . 217:489-498. 122.Ward, W. W., Cody, C. W., Hart, R. C., Cormier, M. J. (1980). Spectrophotometric identity of the energy transfer chromophores in renilla and aequorea green fluorescent proteins. Photochem. Photobiol. 31:611-615. 123.Wijgerde, T., van Melis, A., Silva, C. I., Leal, M. C., Vogels, L., Mutter, C., Osinga, R. (2014). Red light represses the photophysiology of the scleractinian coral Stylophora pistillata. PloS one. 9:e92781. 124.Yellowlees, D., Rees, T. A., Leggat, W. (2008). Metabolic interactions between algal symbionts and invertebrate hosts. Plant Cell Environ. 31:679-694. 125.Young, J. C., Moarefi, I., Hartl, F. U. (2001). Hsp90: a specialized but essential protein-folding tool. J Cell Biol. 154:267-273. 126.Zhang, Y., Zhou, Z., Wang, L., & Huang, B. (2018). Transcriptome, expression, and activity analyses reveal a vital heat shock protein 70 in the stress response of stony coral Pocillopora damicornis. Cell Stress Chaperones. 23:711-721.
貳、不同營養源的小球藻對文蛤飼養之影響 1.朱鴻鈞 (2010)。全球漁業發展現況及未來趨勢分析兼論台灣漁業發展現況。Bio-Economy 2030生物經濟與科技前瞻《系列6-9》。 2.李曉英,董志國,閻斌倫,程漢良,孟學平,沈和定 (2010)。青蛤與文蛤的營養成分分析與評價。淮海工學院江蘇省海洋生物技術重點實驗室、上海海洋大學水產與生命學院,食品科學Vol. 31,No. 23。 3.周昱翰 (2017)。文蛤的養殖與管理。行政院農業委員會水產試驗所海水繁養殖研究中心台西試驗場。科學發展535期。 4.周昱翰,葉信利 (2017)。文蛤養殖過程的底土管理。水產試驗所海水繁養殖研究中心。水試專訊58期。 5.陳君如 (2017)。文蛤養殖。行政院農業委員會水產試驗所。水產試驗所技術手冊10。 6.陳威克,張峻齊,余峰維,許晉榮 (2019)。臺灣文蛤養殖產業與綠能共構問卷調查分析。水產試驗所企劃資訊組。水試專訊68期12月 7.葉信利 (2017)。明珠生輝、風華再現─台灣的貝類養殖,科學發展535期,行政院農業委員會水產試驗所海水繁養殖研究中心 8.漁業署 (2016)。中華民國 106 年台閩地區漁業統計年報,行政院農業委員會漁業署。 9.Aguilera, C. M., Ramírez-Tortosa, M. C., Mesa, M. D., Ramírez-Tortosa, C. L., Gil, A. (2002). Sunflower, virgin-olive and fish oils differentially affect the progression of aortic lesions in rabbits with experimental atherosclerosis. Atherosclerosis. 162:335-344. 10.Alexander J. W. (1998). Immunonutrition: the role of omega-3 fatty acids. Nutrition 14:627-633. 11.Chen, H., Li, D., Chen, J., Roberts, G. J., Saldeen, T., Mehta, J. L. (2003). EPA and DHA attenuate ox-LDL-induced expression of adhesion molecules in human coronary artery endothelial cells via protein kinase B pathway. J Mol Cell Cardiol. 35:769-775. 12.Chen, S. M., Tseng, K. Y., & Huang, C. H. (2015). Fatty acid composition, sarcoplasmic reticular lipid oxidation, and immunity of hard clam (Meretrix lusoria) fed different dietary microalgae. Fish Shellfish Immunol. 45:141-145. 13.Dacheux, J. L., Dacheux, F., & Druart, X. (2016). Epididymal protein markers and fertility. Anim Reprod Sci. 169:76-87. 14.de Jaeger, L., Verbeek, R.E.M., Draaisma, R.B., Martens, D.E., Springer, J.,Eggink, G., Wijffels, R.H. (2014). Superior triacylglycerol (TAG) accumulation in starchless mutants of Scenedesmus obliquus: (I) mutant generation and characterization. Biotechnol Biofuels. 7:69. 15.De Toni, L., Sabovic, I., De Filippis, V., Acquasaliente, L., Peterle, D., Guidolin, D., Sut, S., Di Nisio, A., Foresta, C., & Garolla, A. (2021). Sperm Cholesterol Content Modifies Sperm Function and TRPV1-Mediated Sperm Migration. Int J Mol Sci. 22:3126. 16.El-Kassas, H.Y. (2013). Growth and fatty acid profile of the marine microalga Picochlorum sp. grown under nutrient stress conditions. Egypt. J. Aquat. Res. 39:233-239. 17.Fan, J., Yan, C., Andre, C., Shanklin, J., Schwender, J., Xu, C. (2012). Oil accumulation is controlled by carbon precursor supply for fatty acid synthesis in Chlamydomonas reinhardtii. Plant Cell Physiol. 53:1380-1390. 18.FAO (2020). 《2020年世界漁業和水產養殖狀況:可持續發展在行動》。羅馬。朱鴻鈞 (2010)全球漁業發展現況及未來趨勢分析兼論台灣漁業發展現況,Bio-Economy 2030生物經濟與科技前瞻《系列6-9》 19.Ferguson, E. M., & Leese, H. J. (2006). A potential role for triglyceride as an energy source during bovine oocyte maturation and early embryo development. Mol Reprod Dev. 73:1195-1201. 20.Gallager, S. M., Mann, R. (1981). The effect of varying carbon-nitrogen ratio in the phytoplankter Thalassiosira pseudonana (3H) on its food value to the bivalve Tapes japonica. Aquaculture. 26:95-105. 21.Gonçalves, A. L., Pires, J. C., Simões, M. (2013). Lipid production of Chlorella vulgaris and Pseudokirchneriella subcapitata. 22.González, L.E., Díaz, G.C., Aranda, D.A.G., Cruz, Y.R., Fortes, M.M (2015). Biodiesel Production Based in Microalgae: A Biorefinery Approach. Natural Science. 7:358-369. 23.Govender, T., Ramanna, L., Rawat, I., Bux, F. (2012). BODIPY staining, an alternative to the Nile Red fluorescence method for the evaluation of intracellular lipids in microalgae. Bioresour Technol. 114:507-511.. 24.Guillard, R. R. L., Ryther, J.H. (1962). Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea Cleve. Can. J. Microbiol. 8:229-239. 25.He, R. J., Yu, Z. H., Zhang, R. Y., & Zhang, Z. Y. (2014). Protein tyrosine phosphatases as potential therapeutic targets. Acta Pharmacol Sin. 35:1227-1246. 26.Ho, S. H., Chen, C. N., Lai, Y. Y., Lu, W. B., Chang, J. S. (2014). Exploring the high lipid production potential of a thermotolerant microalga using statistical optimization and semi-continuous cultivation. Bioresour Technol. 163:128-135. 27.Hu, F. B., Bronner, L., Willett, W. C., Stampfer, M. J., Rexrode, K. M., Albert, C. M., Hunter, D., Manson, J. E. (2002). Fish and omega-3 fatty acid intake and risk of coronary heart disease in women. JAMA, 287:1815-1821. 28.Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M., Darzins, A. (2008). Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J. 54:621-639. 29.Jeffrey, S. W., HumphreyNew, G. (1975). spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biocbem. Pbysiol. Pflanzen. 167:191-194. 30.Johansen, O., Seljeflot, I., Høstmark, A. T., Arnesen, H. (1999). The effect of supplementation with omega-3 fatty acids on soluble markers of endothelial function in patients with coronary heart disease. Arterioscler Thromb Vasc Biol. 19:1681-1686. 31.Ju, Y. R., Chen, C. F., Chuang, X. Y., Lim, Y. C., Chen, C. W., & Dong, C. D. (2020). Biometry-dependent metal bioaccumulation in aquaculture shellfishes in southwest Taiwan and consumption risk. Chemosphere. 253:126685. 32.Karnjanapratum, S., Benjakul, S., Kishimura, H., & Tsai, Y. H. (2013). Chemical compositions and nutritional value of Asian hard clam (Meretrix lusoria) from the coast of Andaman Sea. Food Chem. 141:4138-4145. Int J Energy Environ Eng 4:14 33.Kikuchi, G., Motokawa, Y., Yoshida, T., & Hiraga, K. (2008). Glycine cleavage system: reaction mechanism, physiological significance, and hyperglycinemia. Proc Jpn Acad Ser B Phys Biol Sci. 84:246-263. 34.Li, T., Gargouri, M., Feng, J., Park, J. J., Gao, D., Miao, C., Dong, T., Gang, D. R., Chen, S. (2015). Regulation of starch and lipid accumulation in a microalga Auxenochlorella protothecoides. Bioresour Technol . 180:250-257. 35.Li, Y., Han, D., Sommerfeld, M., Hu, Q. (2011). Photosynthetic carbon partitioning and lipid production in the oleaginous microalga Pseudochlorococcum sp. (Chlorophyceae) under nitrogen-limited conditions. Bioresour Technol. 102:123-129. 36.Mata, T. M., Martins, A. A., Caetano N. S. (2010). Microalgae for biodiesel production and other applications: A review. Renew. Sust. Energ. Rev. 14:217-232. 37.McVeigh, G. E., Brennan, G. M., Cohn, J. N., Finkelstein, S. M., Hayes, R. J., Johnston, G. D. (1994). Fish oil improves arterial compliance in non-insulin-dependent diabetes mellitus.Arterioscler Thromb. 14:1425-1429. 38.Minhas, A. K., Hodgson, P., Barrow, C. J., Adholeya, A. (2016). A Review on the Assessment of Stress Conditions for Simultaneous Production of Microalgal Lipids and Carotenoids.Front Microbiol. 7:546. 39.Msanne, J., Xu, D., Konda, A. R., Casas-Mollano, J. A., Awada, T., Cahoon, E. B., Cerutti, H. (2012). Metabolic and gene expression changes triggered by nitrogen deprivation in the photoautotrophically grown microalgae Chlamydomonas reinhardtii and Coccomyxa sp. C-169. Phytochemistry. 75: 50-59. 40.Muller-Feuga, A. (2000). The role of microalgae in aquaculture: situation and trends. Journal of Applied Phycology. 12:527-534. 41.Pal, D., Khozin-Goldberg, I., Cohen, Z., Boussiba, S. (2011). The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsis sp. Appl Microbiol Biotechnol. 90:1429-1441. 42.Pasaribu, B., Lin, I. P., Chen, C. S., Lu, C. Y., Jiang, P. L. (2014). Nutrient limitation in Auxenochlorella protothecoides induces qualitative changes of fatty acid and expression of caleosin as a membrane protein associated with oil bodies. Biotechnol Lett. 36:175-180. 43.Robert, R., Trintignac, P. (1997). Substitutes for live microalgae in mariculture: a review. Aquut. Living Resour. 10:315-327. 44.Simopoμlos, A. P., Kifer, R. R., Martin, R. E., Bar-low, S. M. (1991). Health effects of omega 3 polyunsaturated fatty acids in seafoods. World Rev Nutr Diet. 66:1-592. 45.Spolaore, P., Joannis-Cassan, C., Duran, E., & Isambert, A. (2006). Commercial applications of microalgae. J Biosci Bioeng. 101(2), 87-96. 46.Sztalryd, C., & Brasaemle, D. L. (2017). The perilipin family of lipid droplet proteins: Gatekeepers of intracellular lipolysis. Biochim Biophys Acta Mol Cell Biol Lipids. 1862:1221-1232. 47.Taleb, A., Kandilian, R., Touchard, R., Montalescot, V., Rinaldi, T., Taha, S., Takache, H., Marchal, L., Legrand, J., Pruvost, J. (2016). Screening of freshwater and seawater microalgae strains in fully controlled photobioreactors for biodiesel production. Bioresour Technol., 218:480-490. 48.Xie, W., Chen, C., Lui, X., Wang, B., Sun, Y., Yan, M., Zhang, X. (2012). Meretrix meretrix: Activity components and their bioactivities. Life Sci. 9:756-762. 49.Yamaguchi, K. (1996). Recent advances in microalgal bioscience in Japan, with special reference to utilization of biomass and metabolites: a review. J Appl Phycol. 8: 487-502 50.Yeesang, C., Cheirsilp, B. (2011). Effect of nitrogen, salt, and iron content in the growth medium and light intensity on lipid production by microalgae isolated from freshwater sources in Thailand. Bioresour Technol. 102:3034-3040. 51.Zhou, M. M., Ding, L., Wen, M., Che, H. X., Huang, J. Q., Zhang, T. T., Xue, C. H., Mao, X. Z., & Wang, Y. M. (2018). Mechanisms of DHA-enriched phospholipids in improving cognitive deficits in aged SAMP8 mice with high-fat diet. J Nutr Biochem. 59:64-75. 52.Zhu, S., Feng, P., Feng, J., Xu, J., Wang, Z., Xu, J., Yuan, Z. (2018). The roles of starch and lipid in Chlorella sp. during cell recovery from nitrogen starvation. Bioresour Technol. 247:58-65. 53.Zhu, S., Wang, Y., Shang, C., Wang, Z., Xu, J., Yuan, Z. (2015). Characterization of lipid and fatty acids composition of Chlorella zofingiensis in response to nitrogen starvation. J Biosci Bioeng. 120:205-209.
|