|
[1]P. T. Chiang, G. J. Chen, S. R. Jian, Y. H. Shih, J. S. C. Jang, and C. H. Lai, “Surface antimicrobial effects of Zr61Al7.5Ni10Cu17.5Si4 thin film metallic glasses on Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Acinetobacter baumannii and Candida albicans”, Fooyin Journal of Health Sciences, vol. 2, no. 1, pp. 12-20, 2010. [2]C. J. Lee, H. K. Lin, S. Y. Sun, and J. C. Huang, “Characteristic difference between ITO/ZrCu and ITO/Ag bi-layer films as transparent electrodes deposited on PET substrate”, Applied Surface Science, vol. 257, no. 1, pp. 239-243, 2010. [3]S. R. Ning, J. Gao, and Y. G. Wang, “Review on applications of low loss amorphous metals in motors”, in Advanced Materials Research, vol. 129, pp. 1366-1371, Trans Tech Publications, 2010. [4]G. Kumar, H. X. Tang, and J. Schroers, “Nanomoulding with amorphous metals”, Nature, vol. 457, no. 7231, pp. 868, 2009. [5]K. A. Darling, M. A. Tschopp, R. K. Guduru, W. H. Yin, Q. Wei, and L. J. Kecskes, “Microstructure and mechanical properties of bulk nanostructured Cu–Ta alloys consolidated by equal channel angular extrusion”, Acta Materialia, vol. 76, pp. 168-185, 2014. [6]R. Ekambaram, P. Thamburaja, H. Yang, Y. Li, and N. Nikabdullah, “The multi-axial deformation behavior of bulk metallic glasses at high homologous temperatures”, International Journal of Solids and Structures, vol. 47, no. 5, pp. 678-690, 2010. [7]H. H. Ruan, L. C. Zhang, and J. Lu, “A new constitutive model for shear banding instability in metallic glass”, International Journal of Solids and Structures, vol. 48, no. 21, pp. 3112-3127, 2011. [8]H. Kou, J. Lu, and Y. Li, “High‐strength and high‐ductility nanostructured and amorphous metallic materials”, Advanced Materials, vol. 26, no. 31, pp. 5518-5524, 2014. [9]A. S. Tran, and T. H. Fang, “Void growth and coalescence in Cu-Ta metallic glasses using molecular dynamics”, Computational Materials Science, vol. 168, pp. 144-153, 2019. [10]C. A. Pampillo, “Flow and fracture in amorphous alloys”, Journal of Materials Science, vol. 10, no. 7, pp. 1194-1227, 1975. [11]S. Zhuang, J. Lu, and G. Ravichandran, “Shock wave response of a zirconium-based bulk metallic glass and its composite”, Applied Physics Letters, vol. 80, no. 24, pp. 4522-4524, 2002. [12]A. L. Greer, and E. Ma, “Bulk metallic glasses: at the cutting edge of metals research”, MRS Bulletin, vol. 32, no. 8, pp. 611-619, 2007. [13]M. Chen, A. Inoue, W. Zhang, and T. Sakurai, “Extraordinary plasticity of ductile bulk metallic glasses”, Physical Review Letters, vol. 96, no. 24, pp. 245502, 2006. [14]Z. Ning, W. Liang, M. Zhang, Z. Li, H. Sun, A. Liu, and J. Sun, “High tensile plasticity and strength of a CuZr-based bulk metallic glass composite”, Materials & Design, vol. 90, pp. 145-150, 2016. [15]S. Feng, L. Qi, F. Zhao, S. Pan, G. Li, M. Ma, and R. Liu, “A molecular dynamics analysis of internal friction effects on the plasticity of Zr65Cu35 metallic glass”, Materials & Design, vol. 80, pp. 36-40, 2015. [16]A. A. Tsarkov, A. Y. Churyumov, V. Y. Zadorozhnyy, and D. V. Louzguine-Luzgin, “High-strength and ductile (Ti–Ni)-(Cu–Zr) crystalline/amorphous composite materials with superelasticity and TRIP effect”, Journal of Alloys and Compounds, vol. 658, pp. 402-407, 2016. [17]Y. Cui, Y. Shibutani, S. Li, P. Huang, and F. Wang, “Plastic deformation behaviors of amorphous-Cu50Zr50/crystalline-Cu nanolaminated structures by molecular dynamics simulations”, Journal of Alloys and Compounds, vol. 693, pp. 285-290, 2017. [18]J. Y. Zhang, G. Liu, S. Y. Lei, J. J. Niu, and J. Sun, “Transition from homogeneous-like to shear-band deformation in nanolayered crystalline Cu/amorphous Cu–Zr micropillars: Intrinsic vs. extrinsic size effect”, Acta Materialia, vol. 60, no. 20, pp. 7183-7196, 2012. [19]Y. Cui, O. T. Abad, F. Wang, P. Huang, T. J. Lu, K. W. Xu, and J. Wang, “Plastic deformation modes of CuZr/Cu multilayers”, Scientific Reports, vol. 6, pp. 23306, 2016. [20]J. L. Pelegrina, F. C. Gennari, A. M. Condó, and A. F. Guillermet, “Predictive Gibbs-energy approach to crystalline/amorphous relative stability of nanoparticles: Size-effect calculations and experimental test”, Journal of Alloys and Compounds, vol. 689, pp. 161-168, 2016. [21]H. Y. Song, and Y. L. Li, “Atomic simulations of deformation mechanisms of crystalline Mg/amorphous Mg–Al nanocomposites”, Physics Letters A, vol. 379, no. 36, pp. 2087-2091, 2015. [22]C. Zhong, H. Zhang, Q. P. Cao, X. D. Wang, D. X. Zhang, J. W.,Hu, and J. Z. Jiang, “Non-localized deformation in CuZr multi-layer amorphous films under tension”, Journal of Alloys and Compounds, vol. 678, pp. 410-420, 2016. [23]Z. Fan, S. Xue, J. Wang, K. Y. Yu, H. Wang, and X. Zhang, “Unusual size dependent strengthening mechanisms of Cu/amorphous CuNb multilayers”, Acta Materialia, vol. 120, pp. 327-336, 2016. [24]M. Alper, P. S. Aplin, K. Attenborough, D. J. Dingley, R. Hart, S. J. Lane, and W. Schwarzacher, “Growth and characterization of electrodeposited Cu/Cu-Ni-Co alloy superlattices”, Journal of Magnetism and Magnetic Materials, vol. 126, pp. 8-11, 1993. [25]I. Knorr, N. M. Cordero, E. T. Lilleodden, and C. A. Volkert, “Mechanical behavior of nanoscale Cu/PdSi multilayers”, Acta Materialia, vol. 61, no. 13, pp. 4984-4995, 2013. [26]H. Hilzinger, “Applications of metallic glasses in the electronics industry”, IEEE Transactions on Magnetics, vol. 21, no. 5, pp. 2020-2025, 1985. [27]N. Nishiyama, K. Amiya, and A. Inoue, “Novel applications of bulk metallic glass for industrial products”, Journal of Non-Crystalline Solids, vol. 353, pp. 3615-3621, 2007. [28]S. F. Guo, L. Liu, and X. Lin, “Formation of magnetic Fe-based bulk metallic glass under low vacuum”, Journal of Alloys and Compounds, vol. 478, pp. 226-228, 2009. [29]J. R. Greer, and J. T. M. De Hosson, “Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect”, Progress in Materials Science, vol. 56, no. 6, pp. 654-724, 2011. [30]A. Gebert, P. F. Gostin, M. Uhlemann, J. Eckert, and L. Schultz, “Interactions between mechanically generated defects and corrosion phenomena of Zr-based bulk metallic glasses”, Acta Materialia, vol. 60 , no. 5, pp. 2300-2309, 2012. [31]H. B. Lu, L. C. Zhang, A. Gebert, and L. Schultz, “Pitting corrosion of Cu–Zr metallic glasses in hydrochloric acid solutions”, Journal of Alloys and Compounds, vol. 462, pp. 60-67, 2008. [32]H. F. Zhou, C. Zhong, Q. P. Cao, S. X. Qu, X. D. Wang, W. Yang, and J. Z. Jiang, “Non-localized deformation in metallic alloys with amorphous structure”, Acta Materialia, vol. 68, pp. 32-41, 2014. [33]G. He, J. Eckert, W. Löser, and L. Schultz, “Novel Ti-base nanostructure–dendrite composite with enhanced plasticity”, Nature Materials, vol. 2, no. 1, pp. 33, 2003. [34]J. C. Qiao, and J. M. Pelletier, “Analysis of atomic mobility in a Cu38Zr46Ag8Al8 bulk metallic glass”, Journal of Alloys and Compounds, vol. 549, pp. 370-374, 2013. [35]J. C. Qiao, J. M. Pelletier, C. Esnouf, Y. Liu, and H. Kato, “Impact of the structural state on the mechanical properties in a Zr–Co–Al bulk metallic glass”, Journal of Alloys and Compounds, vol. 607, pp. 139-149, 2014. [36]J. C. Qiao, and J. M. Pelletier, “Influence of thermal treatments and plastic deformation on the atomic mobility in Zr50.7Cu28Ni9Al12.3 bulk metallic glass”, Journal of Alloys and Compounds, vol. 615, pp. 85-89, 2014. [37]A. L. Greer, Y. Q. Cheng, and E. Ma, “Shear bands in metallic glasses” Materials Science and Engineering: R: Reports, vol. 74, no. 4, pp. 71-132, 2013. [38]C. A. Pampillo, “Flow and fracture in amorphous alloys”, Journal of Materials Science, vol. 10, no. 7, pp. 1194-1227, 1975. [39]J. J. Hoyt, S. Raman, N. Ma, and M. Asta, “Unusual temperature dependence of the solid-liquid interfacial free energy in the Cu-Zr system”, Computational Materials Science, vol. 154, pp. 303-308, 2018. [40]S. Kazanc, “Molecular dynamics study of pressure effect on crystallization behaviour of amorphous CuNi alloy during isothermal annealing”, Physics Letters A, vol. 365, pp. 473-477, 2007. [41]A. Păduraru, U. G. Andersen, A. Thyssen, N. P. Bailey, K. W. Jacobsen, and J. Schiøtz, “Computer simulations of nanoindentation in Mg–Cu and Cu–Zr metallic glasses”, Modelling and Simulation in Materials Science and Engineering, vol. 18, no. 5, pp. 055006, 2010. [42]E. S. Park, and D. H. Kim, “Phase separation and enhancement of plasticity in Cu–Zr–Al–Y bulk metallic glasses”, Acta Materialia, vol. 54, no. 10, pp. 2597-2604, 2006. [43]T. Frolov, K. A. Darling, L. J. Kecskes, and Y. Mishin, “Stabilization and strengthening of nanocrystalline copper by alloying with tantalum”, Acta Materialia, vol. 60, no. 5, pp. 2158-2168, 2012. [44]K. A. Darling, A. J. Roberts, Y. Mishin, S. N. Mathaudhu, and L. J. Kecskes, “Grain size stabilization of nanocrystalline copper at high temperatures by alloying with tantalum”, Journal of Alloys and Compounds, vol. 573, pp. 142-150, 2013. [45]A. S. Tran, T. H. Fang, and J. W. Hsiao, “Incipient plasticity and voids nucleation of nanocrystalline gold nanofilms using molecular dynamics simulation”, Current Applied Physics, vol. 19, no. 3, pp. 332-340, 2019. [46]A. S. Tran, and T. H. Fang, “Dislocation interaction and fracture of Cu/Ta bilayer interfaces”, Physica Scripta, vol. 94, no. 9, pp. 095402, 2019. [47]H. Y. Song, M. Wang, M. R. An, and Y. L. Li, “Enhancing the plasticity of noncrystalline CuZr multilayer: Insights from molecular dynamics simulations”, Journal of Non-Crystalline Solids, vol. 507, pp. 11-18, 2019. [48]I. A. Alhafez, and H. M. Urbassek, “Scratching of hcp metals: a molecular-dynamics study”, Computational Materials Science, vol. 113, pp. 187-197, 2016. [49]T. Junge, and J. F. Molinari, “Plastic activity in nanoscratch molecular dynamics simulations of pure aluminium”, International Journal of Plasticity, vol. 53, pp. 90-106, 2014. [50]A. S. Tran, T. H. Fang, L. R. Tsai, and C. H. Chen, “Friction and scratch characteristics of textured and rough surfaces using the quasi-continuum method”, Journal of Physics and Chemistry of Solids, vol. 126, pp. 180-188, 2019. [51]C. Liebold, and W. H. Müller, “Comparison of gradient elasticity models for the bending of micromaterials”, Computational Materials Science, vol. 116, pp. 52-61, 2016. [52]A. S. Tran, Z. H. Hong, M. Y. Chen, and T. H. Fang, “Incipient plasticity and indentation response of MgO surfaces using molecular dynamics”, Materials Research Express, vol. 5, no. 5, pp. 055017, 2018. [53]F. Wang, J. Zhao, N. Zhu, and Z. Li, “A comparative study on Johnson–Cook constitutive modeling for Ti–6Al–4V alloy using automated ball indentation (ABI) technique”, Journal of Alloys and Compounds, vol. 633, pp. 220-228, 2015. [54]M. Kazembeyki, M. Bauchy, and C. G. Hoover, “New insights into the indentation size effect in silicate glasses”, Journal of Non-Crystalline Solids, vol. 521, pp. 119494, 2019. [55]M. A. Shehadeh, H. M. Zbib, and T. D. De la Rubia, “Multiscale dislocation dynamics simulations of shock compression in copper single crystal”, International journal of plasticity, vol. 21, no. 12, pp. 2369-2390, 2005. [56]D. Q. Doan, T. H. Fang, A. S. Tran, and T. H. Chen, “Residual stress and elastic recovery of imprinted Cu-Zr metallic glass films using molecular dynamic simulation”, Computational Materials Science, vol. 170, pp. 109162, 2019. [57]D. Q. Doan, T. H. Fang, A. S. Tran, and T. H. Chen, “High deformation capacity and dynamic shear band propagation of imprinted amorphous Cu50Zr50/crystalline Cu multilayered nanofilms”, Journal of Physics and Chemistry of Solids, vol. 138, pp. 109291, 2019. [58]C. Gu, P. Huang, M. B. Liu, K. W. Xu, F. Wang, and T. J. Lu, “Intrinsic size effect of CuTa/Cu nanolaminates with unequal modulation ratios”, Scripta Materialia, vol. 130, pp. 100-104, 2017. [59]C. Gu, F. Wang, P. Huang, T. J. Lu, and K. W. Xu, “Effects of Cu layers on the deformation behavior of CuTa/Cu multilayer thin films”, Materials Science and Engineering: A, vol. 649, pp. 9-17, 2016. [60]C. Gu, F. Wang, P. Huang, K. W. Xu, and T. J. Lu, “Structure-dependent size effects in CuTa/Cu nanolaminates”, Materials Science and Engineering: A, vol. 658, pp. 381-388, 2016. [61]M. S. Daw, and M. I. Baskes, “Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals”, Physical Review B, vol. 29, no. 12, pp. 6443, 1984. [62]M. I. Mendelev, D. J. Sordelet, and M. J. Kramer, “Using atomistic computer simulations to analyze x-ray diffraction data from metallic glasses”, Journal of Applied Physics, vol. 102, no. 4, pp. 043501, 2007. [63]R. Shi, P. Xiao, R. Yang, and Y. Bai, “Atomic-Level Structural Identification for Prediction of Localized Shear Deformation in Metallic Glasses”, International Journal of Solids and Structures, 2020. [64]K. Chatterjee, A. Venkataraman, T. Garbaciak, J. Rotella, M. D. Sangid, A. J. Beaudoin, and A. L. Pilchak, “Study of grain-level deformation and residual stresses in Ti-7Al under combined bending and tension using high energy diffraction microscopy (HEDM)”, International Journal of Solids and Structures, vol. 94, pp. 35-49, 2016. [65]A. Ray, M. K. Srivastava, G. Kondayya, and S. V. G. Menon, “Improved equation of state of metals in the liquid-vapor region”, Laser and Particle Beams, vol. 24, no. 3, pp. 437-445, 2006. [66]F. F. Abraham, “Computational statistical mechanics methodology, applications and supercomputing”, Advances in Physics, vol. 35, no. 1, pp. 1-111, 1986. [67]A. Stukowski, “Structure identification methods for atomistic simulations of crystalline materials”, Modelling and Simulation in Materials Science and Engineering, vol. 20, no. 4, pp. 045021, 2012. [68]D. Li, F. Wang, Z. Yang, and Y. Zhao, “How to identify dislocations in molecular dynamics simulations?”, Science China Physics, Mechanics & Astronomy, vol. 57, no. 12, pp. 2177-2187, 2014. [69]Y. Y. Xiao, X. F. Kong, B. N. Yao, D. Legut, T. C. Germann, and R. F. Zhang, “Atomistic insight into the dislocation nucleation at crystalline/crystalline and crystalline/amorphous interfaces without full symmetry”, Acta Materialia, vol. 162, pp. 255-267, 2019. [70]E. Alishahi, and C. Deng, “Orientation dependent plasticity of metallic amorphous-crystalline interface”, Computational Materials Science, vol. 141, pp. 375-387, 2018. [71]Y. Wang, J. Li, A. V. Hamza, and T. W. Barbee, “Ductile crystalline–amorphous nanolaminates” Proceedings of the National Academy of Sciences, vol. 104, no. 27, pp. 11155-11160, 2007. [72]H. Y. Song, M. Wang, Q. Deng, and Y. L. Li, “Deformation mode transitions in Cu50Zr50 amorphous/Cu crystalline nanomultilayer: A molecular dynamics study”, Journal of Non-Crystalline Solids, vol. 490, pp. 13-21, 2018. [73]H. Y. Song, J. J. Xu, Y. G. Zhang, S. Li, D. H. Wang, and Y. L. Li, “Molecular dynamics study of deformation behavior of crystalline Cu/amorphous Cu50Zr50 nanolaminates”, Materials & Design, vol. 127, pp. 173-182, 2017. [74]H. Y. Song, S. Li, and Q. Deng, “Coupling effects of thickness and aspect ratio on deformation behavior of Cu50Zr50 metallic glass”, Computational Materials Science, vol. 139, pp. 106-114, 2017. [75]H. Y. Song, S. Li, Y. G. Zhang, Q. Deng, T. H. Xu, and Y. L. Li, “Atomic simulations of plastic deformation behavior of Cu50Zr50 metallic glass”, Journal of Non-Crystalline Solids, vol. 471, pp. 312-321, 2017. [76]L. H. Friedman, and D. C. Chrzan, “Scaling theory of the Hall-Petch relation for multilayers”, Physical Review Letters, vol. 81, no. 13, pp. 2715, 1998. [77]Y. Cui, P. Huang, F. Wang, T. J. Lu, and K. W. Xu, “The hardness and related deformation mechanisms in nanoscale crystalline–amorphous multilayers”, Thin Solid Films, vol. 584, pp. 270-276, 2015. [78]S. Mojumder, T. Rakib, and M. Motalab, “Atomistic study of hardening mechanism in Al-Cu nanostructure”, Journal of Nanoparticle Research, vol. 21, no. 5, pp. 88, 2019. [79]M. C. Liu, X. H. Du, I. C. Lin, H. J. Pei, and J. C. Huang, “Superplastic-like deformation in metallic amorphous/crystalline nanolayered micropillars”, Intermetallics, vol. 30, pp. 30-34, 2012. [80]Y. Zhao, X. Peng, T. Fu, R. Sun, C. Feng, and Z. Wang, “MD simulation of nanoindentation on (001) and (111) surfaces of Ag–Ni multilayers”, Physica E: Low-dimensional Systems and Nanostructures, vol. 74, pp. 481-488, 2015. [81]M. Z. Wei, Z. H. Cao, J. Shi, G. J. Pan, L. J. Xu, and X. K. Meng, “Anomalous plastic deformation in nanoscale Cu/Ta multilayers”, Materials Science and Engineering: A, vol. 598, pp. 355-359, 2014. [82]M. Verdier, M. Niewczas, J. D. Embury, M. Hawley, M. Nastasi, and H. Kung, “Plastic behaviour of Cu/Ni multilayers”, MRS Online Proceedings Library Archive, vol. 522, 1998. [83]C. H. Lin, Y. Z. Tsai, and J. G. Duh, “Effect of grain size on mechanical properties in CrAlN/SiNx multilayer coatings”, Thin Solid Films, vol. 518, no. 24, pp. 7312-7315, 2010. [84]C. Su, and L. Anand, “Plane strain indentation of a Zr-based metallic glass: experiments and numerical simulation”, Acta Materialia, vol. 54, no. 1, pp. 179-189, 2006. [85]D. Zhao, H. Zhao, B. Zhu, and S. Wang, “Investigation on hardening behavior of metallic glass under cyclic indentation loading via molecular dynamics simulation”, Applied Surface Science, vol. 416, pp. 14-23, 2017. [86]D. Q. Doan, T. H. Fang, and T. H. Chen, “Nanotribological characteristics and strain hardening of amorphous Cu64Zr36/crystalline Cu nanolaminates”, Tribology International, vol. 147, pp. 106275, 2020. [87]C. Sterwerf, T. Kaub, C. Deng, G. B. Thompson, and L. Li, “Deformation mode transitions in amorphous-Cu45Zr55/crystalline-Cu multilayers”, Thin Solid Films, vol. 626, pp. 184-189, 2017. [88]W. R. Jian, L. Wang, X. H. Yao, and S. N. Luo, “Tensile and nanoindentation deformation of amorphous/crystalline nanolaminates: Effects of layer thickness and interface type”, Computational Materials Science, vol. 154, pp. 225-233, 2018. [89]J. Y. Kim, D. Jang, and J. R. Greer, “Nanolaminates Utilizing Size‐Dependent Homogeneous Plasticity of Metallic Glasses”, Advanced Functional Materials, vol. 21, no. 23, pp. 4550-4554, 2011. [90]A. Donohue, F. Spaepen, R. G. Hoagland, and A. Misra, “Suppression of the shear band instability during plastic flow of nanometer-scale confined metallic glasses”, Applied Physics Letters, vol. 91, no. 24, pp. 241905, 2007. [91]W. Guo, E. Jägle, J. Yao, V. Maier, S. Korte-Kerzel, J. M. Schneider, and D. Raabe, “Intrinsic and extrinsic size effects in the deformation of amorphous CuZr/nanocrystalline Cu nanolaminates”, Acta Materialia, vol. 80, pp. 94-106, 2014. [92]H. Dai, S. Li, and G. Chen, “Molecular dynamics simulation of subsurface damage mechanism during nanoscratching of single crystal silicon”, Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, vol. 233, no. 1, pp. 61-73, 2019. [93]S. W. Liang, R. Z. Qiu, and T. H. Fang, “Molecular dynamics simulations of nanoindentation and scratch in Cu grain boundaries”, Beilstein Journal of Nanotechnology, vol. 8, no. 1, pp. 2283-2295, 2017. [94]C. Qiu, P. Zhu, F. Fang, D. Yuan, and X. Shen, “Study of nanoindentation behavior of amorphous alloy using molecular dynamics” Applied Surface Science, vol. 305, pp. 101-110, 2014.
|