|
[1]X. Yang, P. Zheng, Q. Bi, and K. Weber, “Silicon heterojunction solar cells with electron selective TiOx contact,” Solar Energy Materials & Solar Cells, Vol. 150, 2016, pp. 32–38. [2]L. G. Gerling, S. Mahato, A. Morales-Vilches, G. Masmitja, P. Ortega, C. Voz, R. Alcubilla, and J. Puigdollers, “Transition metal oxides as hole-selective contacts in silicon heterojunctions solar cells,” Solar Energy Materials & Solar Cells, Vol. 145, 2016, pp. 109–115. [3]R. Mukherjee, P. Srivastava, P. Ravindra, and S. Avasthi, “Doped Cu2O/n-Si heterojunction solar cell,” 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion, 2018, pp. 2162-2165. [4]A. Mittiga, E. Salza, F. Sarto, M. Tucci, and R. Vasanthi, “Heterojunction solar cell with 2% efficiency based on a Cu2O substrate,” Applied Physics Letters, Vol. 88, 2006, p. 163502. [5]S. Chatterjee, S. K. Saha, and A. J. Pal, “Formation of all-oxide solar cells in atmospheric condition based on Cu2O thin-films grown through SILAR technique,” Solar Energy Materials and Solar Cells, Vol. 147, 2016, pp. 17-26. [6]Z. C. Holman, A. Descoeudres, L. Barraud, F. Z. Fernandez, J. P. Seif, S. D. Wolf, and C. Ballif, “Current losses at the front of silicon heterojunction solar cells,” IEEE Journal of Photovoltaics, Vol. 2, 2012, pp. 7-15. [7]P. Ravindra, R. Mukherjee, and S. Avasthi, “Hole-selective electron-blocking copper oxide contact for silicon solar cells,” IEEE Journal of Photovoltaics, Vol. 7, 2017, pp. 1278-1283 [8]S. Boudour, I. Bouchama, M. Hadjab, and S. Laidoudi, “Optimization of defected ZnO/Si/Cu2O heterostructure solar cell,” Optical Materials, Vol. 98, 2019, p. 109433. [9]W. Niu, M. Zhou, Z. Ye, and L. Zhu, “Photoresponse enhancement of Cu2O solar cell with sulfur-doped ZnO buffer layer to mediate the interfacial band alignment,” Solar Energy Materials & Solar Cells, Vol. 144, 2016, pp. 717–723. [10]S. Mani, J. I. Jang, J. B. Ketterson, and H. Y. Park, “High-quality Cu2O crystals with various morphologies grown by thermal oxidation,” Journal of Crystal Growth, Vol. 311, 2009, pp. 3549–3552. [11]M. Cheon, B. Jung, S. J. Kim, J. I. Jang, and S. Y. Jeong, “High-quality epitaxial Cu2O films with (111)-terminated plateau grains obtained from single-crystal Cu (111) thin films by rapid thermal oxidation,” Journal of Alloys and Compounds, Vol. 801, 2019, pp. 536–541. [12]L. Schramm, G. Behr, W. Loser, and K. Wetzig, “Thermodynamic reassessment of the Cu-O phase diagram,” Journal of Phase Equilibria and Diffusion, Vol. 26, 2005, pp. 605–612. [13]L. D. L. S. Valladares, D. H. Salinas, A. B. Dominguez, D. A. Najarro, S. I. Khondaker, T. Mitrelias, C. H. W. Barnes, J. A. Aguiar, and Y. Majima, “Crystallization and electrical resistivity of Cu2O and CuO obtained by thermal oxidation of Cu thin films on SiO2/Si substrates,” Thin Solid Films, Vol. 520, 2012, pp. 6368–6374. [14]V. Figueiredo, E. Elangovan, G. Goncalves, P. Barquinha, L. Pereira, N. Franco, E. Alves, R. Martins, and E. Fortunato, “Effect of post-annealing on the properties of copper oxide thin films obtained from the oxidation of evaporated metallic copper,” Applied Surface Science, Vol. 254, 2008, pp. 3949–3954 [15]Y. Alajlani, F. Placido, A. Barlow, H. O. Chu, S. Song, S. U. Rahman, R. D. Bold, and D. Gibson, “Characterisation of Cu2O, Cu4O3, and CuO mixed phase thin films produced by microwave-activated reactive sputtering,” Vacuum, Vol. 144, 2017, pp. 217–228. [16]H. S. Kim, J. W. Lim, S. J. Yun, M. A. Park, S. Y. Park, S. E. Lee, and H. C. Lee, “Fabrication and characterization of rapidly oxidized p-type Cu2O films from Cu films and their application to heterojunction thin-film solar cells,” Japanese Journal of Applied Physics, Vol. 52, 2013, p. 10MB17. [17]L. Du, and H. Wang, “Large irreversible lateral photovoltaic effect in Cu2O/Si heteroepitaxial junction,” IEEE Electron Device Letters, Vol. 32, 2011, pp. 539–541. [18]F. Lindberg, H. N. Riise, K. Bergum, B. G. Svensson, and E. V. Monakhov, “Electronic properties of Au/Cu2O/n-type Si heterojunction for energy conversion,” 2016 IEEE 43rd Photovoltaic Specialists Conference, 2006, pp. 5–10. [19]N. Gupta, R. Singh, F. Wu, J. Narayan, C. McMillen, G. F. Alapatt, K. F. Poole, S. J. Hwu, D. Sulejmanovic, M. Young, G. Teeter, and H. S. Ullal, “Deposition and characterization of nanostructured Cu2O thin-film for potential photovoltaic applications,” Journal of Materials Research, Vol. 28, 2013, pp. 1740–1746. [20]Y. Liu, J. Zhu, L. Cai, Z. Yao, C. Duan, Z. Zhao, C. Zhao, and W. Mai, “Solution‐processed high‐quality Cu2O thin films as hole transport layers for pushing the conversion efficiency limit of Cu2O/Si heterojunction solar cells,” Solar RRL, Vol. 4, 2020, p. 1900339. [21]L. Xu, X. Chen, Y. Wu, C. Chen, W. Li, W. Pan, and Y. Wang, “Solution-phase synthesis of single-crystal hollow Cu2O spheres with nanoholes,” Nanotechnology, Vol. 17, 2006, pp. 1501–1505. [22]C. Lu, L. Qi, J. Yang, X. Wang, D. Zhang, J. Xiem, and J. Ma, “One‐pot synthesis of octahedral Cu2O nanocages via a catalytic solution route,” Advanced Materials, Vol. 17, 2005, pp. 2562–2567. [23]M. Z. Mohammed, A. A. Al-Hilo, Z. Li, S. AbdulAlmohsin, J. Armstrong, T. P. Chen, and J. Cui, “Cu2O/SWNTs/n-Si heterojunctions for enhanced light harvesting,” 2013 IEEE 39th Photovoltaic Specialists Conference, 2013, pp. 16–21. [24]Z. Zang, “Efficiency enhancement of ZnO/Cu2O solar cells with well oriented and micrometer grain sized Cu2O films,” Applied Physics Letters, Vol. 112, 2018, p. 042106.
[25]N. G. Elfadill, M. R. Hashim, and K. A. Th. Thabit, “The role of using seed-layer assisted electrodeposition method on the growth and the photovoltaic properties of p-Cu2O/n-Si heterojunctions,” Journal of Materials Science: Materials in Electronics, Vol. 26, 2015, pp. 985–991. [26]Z. Liang, Y. Wang, M. Su, W. Mai, J. Xu, W. Xie, and P. Liu, “Improving the quality of the Si/Cu2O interface by methyl-group passivation and its application in photovoltaic devices,” Advanced Materials Interfaces, Vol. 4, 2017, p. 1600833 [27]C. Zuo, and L. Ding, “Solution-processed Cu2O and CuO as hole transport materials for efficient perovskite solar cells,” small, Vol. 11, 2015, pp. 5528–5532. [28]S. Chatterjee, and A. J. Pal, “Introducing Cu2O thin films as a hole-transport layer in efficient planar perovskite solar cell structures,” The Journal of Physical Chemistry C, Vol. 120, 2016, pp. 1428–1437. [29]T. Minami, H. Tanaka, T. Shimakawa, T. Miyata, and H. Sato, “High-efficiency oxide heterojunction solar cells using Cu2O sheets,” Japanese Journal of Applied Physics, Vol. 43, 2004, pp. L 917–L 919. [30]D. C. Perng, M. H. Hong, K. H. Chen, and K. H. Chen, “Enhancement of short-circuit current density in Cu2O/ZnO heterojunction solar cells,” Journal of Alloys and Compounds, Vol. 695, 2017, pp. 549–554. [31]Y. K. Hsua, J. R. Wu, M. H. Chen, Y. C. Chen, and Y. G. Lin, “Fabrication of homojunction Cu2O solar cells by electrochemicaldeposition,” Applied Surface Science, Vol. 354, 2015, pp. 8–13. [32]S. Hussaina, C. Cao, Z. Usman, G. Nabi, F. K. Butt, K. Mahmood, A. Ali, M. I. Arshad, and N. Amine, “Effect of films morphology on the performance of Cu2O PEC solar cells,” International Journal for Light and Electron Optics, Vol. 172, 2018, pp. 72–78. [33]H. Dongliang, H. Jiahai, Q. Long, P. Jiangrui, and S. Zhenji, “Optical and photocatalytic properties of Cu-Cu2O/TiO2 two-layer nanocomposite films on Si substrates,” Rare Metal Materials and Engineering, Vol. 44, 2015, pp. 1888–1893. [34]F. Tian, D. Yang, R. L. Opila, and A. V. Teplyakov, “Chemical and electrical passivation of Si(111) surfaces,” Applied Surface Science, Vol. 258, 2012, pp. 3019–3026. [35]P. K. Singh, R. Kumar, M. Lal, S. N. Singh, and B. K. Das, “Effectiveness of anisotropic etching of silicon in aqueous alkaline solutions,” Solar Energy Materials & Solar Cells, Vol. 70, 2001, pp. 103–113. [36]J. S. Yoo, I. O. Parm, U. Gangopadhyay, K. Kim, S. K. Dhungel, D. Mangalaraj, and J. Yi, “Black silicon layer formation for application in solar cells,” Solar Energy Materials & Solar Cells, Vol. 90, 2006, pp. 3085–3093. [37]E. Cornagliotti, M. Ngamo, L. Tous, R. Russell, J. Horzel, D. Hendrickx, B. Douhard, V. Prajapati, T. Janssensa, and J. Poortmans, “Integration of inline single-side wet emitter etch in PERC cell manufacturing,” Energy Procedia, Vol. 27, 2012, pp. 624–630. [38]J. Schmidt, and M. Kerr, “Highest-quality surface passivation of low-resistivity p-type silicon using stoichiometric PECVD silicon nitride,” Solar Energy Materials & Solar Cells, Vol. 65, 2001, pp. 585–591. [39]F. Duerinckx, and J. Szlufcik, “Defect passivation of industrial multicrystalline solar cells basedon PECVD silicon nitride,” Solar Energy Materials & Solar Cells, Vol. 72, 2002, pp. 231–246. [40]C. H. Lin, S. Y. Tsai, S. P. Hsu, and M. H. Hsieh, “Investigation of Ag-bulk/glassy-phase/Si heterostructures of printed Ag contacts on crystalline Si solar cells,” Solar Energy Materials & Solar Cells, Vol. 92, 2008, pp. 1011–1015. [41]S. S. Liao, C. L. Chuang, Y. C. Lin, C. F. Dee, B. Y. Majlis, and E. Y. Chang, “Effect of surface passivation by a low pressure and temperature environment-grown thermal oxide layer for multi-crystalline silicon solar cells,” Thin Solid Films, Vol. 660, 2018, pp. 1–9. [42]L. J. Huang, and W. M. Lau, “Effects of HF cleaning and subsequent heating on the electrical properties of silicon (100) surfaces,” Applied Physics Letters, Vol. 60, 1992, pp. 1108–1110. [43]M. Morita, T. Ohmi, E. Hasegawa, M. Kawakami, and M. Ohwada, “Growth of native oxide on a silicon surface,” Journal of Applied Physics, Vol. 68, 1990, pp. 1272–1281. [44]A. Klein, C. Korber, A. Wachau, F. Sauberlich, Y. Gassenbauer, S. P. Harvey, D. E. Proffit, and T. O. Mason, “Transparent conducting oxides for photovoltaics: manipulation of fermi level,work function and energy band alignment,” Materials, Vol. 3, 2010, pp. 4892–4914. [45]A. T. Oza, G. K. Solanki, A. Amin, and P. Trivedi, “UV-visible-near IR and infrared spectroscopy of β-carotene and β-carotene-iodine complex,” Indian Journal of Physics, Vol. 82, 2008, pp. 1513–1522.
|