|
[1] A., P., &Priya, K. S. (2020). Sentiment Classification of Tweets in Twitter using CNN and Dropouts in RNN. International Journal of Computer Applications, 175(33), 1–5. https://doi.org/10.5120/ijca2020920681 [2] Aarti, M., &Patil, A. (2014). Sentiment Analysis for Product Reviews. International Journal of Advanced Research in Computer Science, 5(5), 202–204. https://doi.org/10.21917/ijsc.2019.0266 [3] Al-Hassan, A., &Al-Dossari, H. (2019). Detection of Hate Speech in Social Networks: a Survey on Multilingual Corpus. 83–100. https://doi.org/10.5121/csit.2019.90208 [4] Alotaibi, A., &Abul Hasanat, M. H. (2020). Racism Detection in Twitter Using Deep Learning and Text Mining Techniques for the Arabic Language. Proceedings - 2020 1st International Conference of Smart Systems and Emerging Technologies, SMART-TECH 2020, 161–164. https://doi.org/10.1109/SMART-TECH49988.2020.00047 [5] Benítez-Andrades, J. A., González-Jiménez, Á., López-Brea, Á., Aveleira-Mata, J., Alija-Pérez, J. M., &García-Ordás, M. T. (2022). Detecting racism and xenophobia using deep learning models on Twitter data: CNN, LSTM and BERT. PeerJ Computer Science, 8, 1–24. https://doi.org/10.7717/PEERJ-CS.906 [6] Bliuc, A. M., Faulkner, N., Jakubowicz, A., &McGarty, C. (2018). Online networks of racial hate: A systematic review of 10 years of research on cyber-racism. Computers in Human Behavior, 87, 75–86. https://doi.org/10.1016/j.chb.2018.05.026 [7] Çelik, Ö. (2018). A Research on Machine Learning Methods and Its Applications. Journal of Educational Technology and Online Learning, September 2018. https://doi.org/10.31681/jetol.457046 [8] Dr. S. Vijayarani, Ms. J. Ilamathi, M. N. (2015). Preprocessing Techniques for Text Mining Preprocessing Techniques for Text Mining. International Journal of Computer Science & Communication Networks, 5(October 2014), 7–16. [9] Fang, H., Lu, C., Hong, F., Jiang, W., &Wang, T. (2021). Convolutional Neural Network for Heartbeat Classification. 2021 15th IEEE International Conference on Electronic Measurement and Instruments, ICEMI 2021, 253–258. https://doi.org/10.1109/ICEMI52946.2021.9679581 [10] Forrester, S., Jacobs, D., Zmora, R., Schreiner, P., Roger, V., &Kiefe, C. I. (2019). Racial differences in weathering and its associations with psychosocial stress: The CARDIA study. SSM - Population Health, 7(August 2018), 100319. https://doi.org/10.1016/j.ssmph.2018.11.003 [11] Garcia, K., &Berton, L. (2021). Topic detection and sentiment analysis in Twitter content related to COVID-19 from Brazil and the USA. Applied Soft Computing, 101, 107057. https://doi.org/10.1016/j.asoc.2020.107057 [12] Hassan, A., &Mahmood, A. (2018). Convolutional Recurrent Deep Learning Model for Sentence Classification. IEEE Access, 6(April), 13949–13957. https://doi.org/10.1109/ACCESS.2018.2814818 [13] He, B., Ziems, C., Soni, S., Ramakrishnan, N., Yang, Di., &Kumar, S. (2021). Racism is a virus: Anti-asian hate and counterspeech in social media during the COVID-19 crisis@gatech.edu. Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2021, 90–94. https://doi.org/10.1145/3487351.3488324 [14] Jagdale, R. S., Shirsat, V. S., &Deshmukh, S. N. (2019). Sentiment analysis on product reviews using machine learning techniques. In Advances in Intelligent Systems and Computing (Vol. 768, Issue January). Springer Singapore. https://doi.org/10.1007/978-981-13-0617-4_61 [15] Kaiser, K. R., Kaiser, D. M., Kaiser, R. M., &Rackham, A. M. (2018). Using Social Media to Understand and Guide the Treatment of Racist Ideology. Global Journal of Guidance and Counseling in Schools: Current Perspectives, 8(1), 38–49. https://doi.org/10.18844/gjgc.v8i1.3579 [16] Khan, W., Daud, A., Nasir, J. A., &Amjad, T. (2016). A survey on the state-of-the-art machine learning models in the context of NLP. Kuwait Journal of Science, 43(4), 95–113. [17] Khurana, D., Koli, A., Khatter, K., &Singh, S. (2022). Natural language processing: state of the art, current trends and challenges. Multimedia Tools and Applications, April 2018. https://doi.org/10.1007/s11042-022-13428-4 [18] Kim, H., &Jeong, Y. S. (2019). Sentiment classification using Convolutional Neural Networks. Applied Sciences (Switzerland), 9(11), 1–14. https://doi.org/10.3390/app9112347 [19] Kumari, K., Singh, J. P., Dwivedi, Y. K., &Rana, N. P. (2021). Bilingual Cyber-aggression detection on social media using LSTM autoencoder. Soft Computing, 25(14), 8999–9012. https://doi.org/10.1007/s00500-021-05817-y [20] Lakshmanarao, A., Srisaila, A., &Kiran, T. S. R. (2022). Twitter Sentiment Classification with Deep Learning LSTM for Airline Tweets. 8th International Conference on Advanced Computing and Communication Systems, ICACCS 2022, 520–524. https://doi.org/10.1109/ICACCS54159.2022.9785208 [21] Lee, E., Rustam, F., Washington, P. B., Barakaz, F.El, Aljedaani, W., &Ashraf, I. (2022). Racism Detection by Analyzing Differential Opinions Through Sentiment Analysis of Tweets Using Stacked Ensemble GCR-NN Model. IEEE Access, 10(January), 9717–9728. https://doi.org/10.1109/ACCESS.2022.3144266 [22] Liu, B., Blasch, E., Chen, Y., Shen, D., &Chen, G. (2013). Scalable sentiment classification for Big Data analysis using Naïve Bayes Classifier. Proceedings - 2013 IEEE International Conference on Big Data, Big Data 2013, 99–104. https://doi.org/10.1109/BigData.2013.6691740 [23] Najafabadi, M. M., Villanustre, F., Khoshgoftaar, T. M., Seliya, N., Wald, R., &Muharemagic, E. (2015). Deep learning applications and challenges in big data analytics. Journal of Big Data, 2(1), 1–21. https://doi.org/10.1186/s40537-014-0007-7 [24] Nath, B., Shri, K., Vaishno, M., Wankhade, M., Chandra, A., Rao, S., Dara, S., &Kaushik, B. (2017). A Sentiment Analysis of Food Review using Logistic Regression. 2(7), 251–260. https://www.researchgate.net/publication/334654833 [25] Plaza-Del-Arco, F. M., Molina-González, M. D., Ureña-López, L. A., &Martín-Valdivia, M. T. (2020). Detecting Misogyny and Xenophobia in Spanish Tweets Using Language Technologies. ACM Transactions on Internet Technology, 20(2). https://doi.org/10.1145/3369869 [26] Poornima, A., &Priya, K. S. (2020). A Comparative Sentiment Analysis of Sentence Embedding Using Machine Learning Techniques. 2020 6th International Conference on Advanced Computing and Communication Systems, ICACCS 2020, 493–496. https://doi.org/10.1109/ICACCS48705.2020.9074312 [27] Putri, T. T. A., Sriadhi, S., Sari, R. D., Rahmadani, R., &Hutahaean, H. D. (2020). A comparison of classification algorithms for hate speech detection. IOP Conference Series: Materials Science and Engineering, 830(3). https://doi.org/10.1088/1757-899X/830/3/032006 [28] Saha, B. N., Senapati, A., &Mahajan, A. (2020). LSTM based Deep RNN Architecture for Election Sentiment Analysis from Bengali Newspaper. 2020 International Conference on Computational Performance Evaluation, ComPE 2020, 564–569. https://doi.org/10.1109/ComPE49325.2020.9200062 [29] Samat, N. A., Salleh, M. N. M., &Ali, H. (2020). The Comparison of Pooling Functions in Convolutional Neural Network for Sentiment Analysis Task. Advances in Intelligent Systems and Computing, 978 AISC(January), 202–210. https://doi.org/10.1007/978-3-030-36056-6_20 [29] Samuel, J., Ali, G. G. M. N., Rahman, M. M., Esawi, E., &Samuel, Y. (2020). COVID-19 public sentiment insights and machine learning for tweets classification. Information (Switzerland), 11(6), 1–22. https://doi.org/10.3390/info11060314 [30] Shu, B., Ren, F., &Bao, Y. (2018). Investigating Lstm with k-Max Pooling for Text Classification. Proceedings - 11th International Conference on Intelligent Computation Technology and Automation, ICICTA 2018, 31–34. https://doi.org/10.1109/ICICTA.2018.00015 [31] Sosa, P. M. (2017). Twitter Sentiment Analysis using combined LSTM-CNN Models. Eprint Arxiv, 1–9. [32] Sumathy, P., &Muthukumari, S. M. (2018). Sentiment Analysis of Twitter Data Using Multi Class Semantic Approach. International Journal of Scientific Research in Computer Science, Engineering and Information Technology © 2018 IJSRCSEIT |, 3(10), 2456–3307. www.amazon.com [33] Koehrsen, W. (2017). Retrieved from https://williamkoehrsen.medium.com/random-forest-simple-explanation-377895a60d2d [34] Kim, Y., Jernite, Y., Sontag, D., & Rush, A. M. (2016, March). Character-aware neural language models. In Thirtieth AAAI conference on artificial intelligence. https://doi.org/10.48550/arXiv.1508.06615 [35] Github. Retrieved from https://cs231n.github.io/convolutional-networks/#pool [36] Olah, C. (2015) Retrieved from http://colah.github.io/posts/2015-08-Understanding-LSTMs/ [37] Analytics Vidhya. Retrieved from https://medium.com/analytics-vidhya/undersampling-and-oversampling-an-old-and-a-new-approach-4f984a0e8392 [38] Cupoy. (2021) Retrieved from https://www.cupoy.com/qa/club/ai_tw/0000016D6BA22D97000000016375706F795F72656C656173654B5741535354434C5542/0000017BD8FC94950000000A6375706F795F72656C656173655155455354
|