|
動機文獻: [1]Deloitte Analytics Institute. (2017). Predictive Maintenance and the Smart Factory. Retrieved from https://www2.deloitte.com/us/en/pages/operations/articles/predictive-maintenance-and-the-smart-factory.html, (July 15, 2024). 震動故障分類相關文獻: [2]Goyal, D., Dhami, S. S., & Pabla, B. S. (2020). Non-Contact Fault Diagnosis of Bearings in Machine Learning Environment. IEEE Sensors Journal, 20(9), 4816-4823. [3]Wang, W., Zhou, G., Ma, G., Yan, X., Zhou, P., He, Z., & Ma, T. (2023). A novel competitive temporal convolutional network for remaining useful life prediction of rolling bearings. IEEE Transactions on Instrumentation and Measurement, 72, 1-12. [4]Zhang, Y., Ren, Z., Feng, K., Yu, K., Ma, H., & Liu, Z. (2023). Transformer-enabled cross-domain diagnostics for complex rotating machinery with multiple sensors. IEEE/ASME Transactions on Mechatronics, 28(4), 2293-2304. [5]Huang, M., Liu, Z., & Tao, Y. (2020). Mechanical fault diagnosis and prediction in IoT based on multi-source sensing data fusion. Simulation Modelling Practice and Theory, 102, 101981. [6]Zhang, J., Song, X., Gao, L., Shen, W., & Chen, J. (2022). L2-Norm shapelet dictionary learning-based bearing-fault diagnosis in uncertain working conditions. IEEE Sensors Journal, 22(3), 2647-2657. [7]Zhou, A. Y., & Barati Farimani, A. (2024). FaultFormer: Pretraining Transformers for adaptable bearing fault classification. IEEE Access, 12, 70719-70728. [8]Dhandapani, R., Mitiche, I., McMeekin, S., & Morison, G. (2022). A novel bearing faults detection method using generalized Gaussian distribution refined composite multiscale dispersion entropy. IEEE Transactions on Instrumentation and Measurement, 71, 1-12. [9]Mei, J., Zhu, M., Liu, W., Fu, M., & Tang, Q. (2024). Conditional variational encoder classifier for open set fault classification of rotating machinery vibration signals. IEEE Transactions on Industrial Informatics, 20(3), 3038-3049. [10]Jiang, G., Nie, S., Xie, P., Li, Y., & Li, X. (2022). Multiscale one-class classification network for machine health monitoring. IEEE Sensors Journal, 22(13), 13043-13054. 音訊故障分類相關文獻: [11]Tang, L., Tian, H., Huang, H., Shi, S., & Ji, Q. (2023). A survey of mechanical fault diagnosis based on audio signal analysis. Measurement, 220, 113294. [12]Kim, S.-M., & Kim, Y. S. (2024). Enhancing sound-based anomaly detection using deep denoising autoencoder. IEEE Access, 12, 84323-84332. [13]Alsumaidaee, Y. A. M., Paw, J. K. S., Yaw, C. T., Tiong, S. K., Chen, C. P., Yusaf, T., Benedict, F., Kadirgama, K., Hong, T. C., & Abdalla, A. N. (2023). Fault detection for medium voltage switchgear using a deep learning hybrid 1D-CNN-LSTM model. IEEE Access, 11, 97574-97589. [14]Wang, Y., Liu, C., Wu, H., Sui, Q., Yang, C., & Gui, W. (2023). Revolutionizing flotation process working condition identification based on froth audio. IEEE Transactions on Instrumentation and Measurement, 72, 1-12. [15]Ahn, H., & Yeo, I. (2021). Deep-learning-based approach to anomaly detection techniques for large acoustic data in machine operation. Sensors, 21(16), Article 5446. [16]Tagawa, Y., Maskeliūnas, R., & Damaševičius, R. (2021). Acoustic anomaly detection of mechanical failures in noisy real-life factory environments. Electronics, 10(19), Article 2329. [17]Chen, J., Zhang, F., & Li, Y. (2023). Sound-based real-time scrap falling state monitoring in the shearing process of wide heavy plate mill. IEEE Sensors Journal, 23(15), 17092-17102. 其他感測器故障分類相關文獻: [18]Peng, H., Jiang, B., Mao, Z., & Liu, S. (2023). Local enhancing transformer with temporal convolutional attention mechanism for bearings remaining useful life prediction. IEEE Transactions on Instrumentation and Measurement, 72, 1-12. [19]Tao, Y., Jun, Z., Zhi-hao, Z. et al. Fault detection of train mechanical parts using multi-mode aggregation feature enhanced convolution neural network. Int. J. Mach. Learn. & Cyber. 13, 1781–1794. [20]Guan, X., Gao, W., Peng, H., Shu, N., & Gao, D. W. (2022). Image-based incipient fault classification of electrical substation equipment by transfer le arning of deep convolutional neural network. IEEE Canadian Journal of Electrical and Computer Engineering, 45(1), 1-8. [21]Yan, J., Li, Q., & Duan, S. (2024). A simplified current feature extraction and deployment method for DC series arc fault detection. IEEE Transactions on Industrial Electronics, 71(1), 625-634. [22]Sun, J., Li, C., Zheng, Z., Wang, K., & Li, Y. (2022). A generalized, fast and robust open-circuit fault diagnosis technique for star-connected symmetrical multiphase drives. IEEE Transactions on Energy Conversion, 37(3), 1921-1933. [23]Xu, D., Jin, F., Zhou, F., Zhao, J., & Wang, W. (2024). Active fault diagnosis based on dual-observer for leakage detection and estimation with adaptive auxiliary signal mechanism in industrial gas networks. IEEE Transactions on Instrumentation and Measurement, 73, 1-11. [24]Dan, H., Yue, W., Xiong, W., Liu, Y., Su, M., & Sun, Y. (2022). Open-switch and current sensor fault diagnosis strategy for matrix converter-based PMSM drive system. IEEE Transactions on Transportation Electrification, 8(1), 875-885. LSTM相關文獻: [25]Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780. TCN相關文獻: [26]Bai, S., Kolter, J. Z., & Koltun, V. (2018). An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. ArXiv, 1803.01271. [27]Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. ArXiv, 1411.4038. [28]Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. ArXiv, 1506.02640. [29]Bochkovskiy, A., Wang, C.-Y., & Liao, H.-Y. M. (2020). YOLOv4: Optimal speed and accuracy of object detection. ArXiv, 2004.10934.
|