|
[1].Goyal, K.K., V. Jain, and S. Kumari, Prediction of optimal process parameters for abrasive assisted drilling of SS304. Procedia materials science, 2014. 6: p. 1572-1579. [2].Kabakli, E., M. Bayramoglu, and N. Geren, Evaluation of the surface roughness and geometric accuracies in a drilling process using the Taguchi analysis. Materials and technology, 2014. 48(1): p. 91-98. [3].Sanjay, C. and C. Jyothi, A study of surface roughness in drilling using mathematical analysis and neural networks. The International Journal of Advanced Manufacturing Technology, 2006. 29(9-10): p. 846-852. [4].Kannan, T.D.B., et al., Application of genetic algorithm technique for machining parameters optimization in drilling of stainless steel. Mechanics and Mechanical Engineering, 2019. 23(1): p. 271-276. [5].Prakash, S. and K. Palanikumar, Modeling for prediction of surface roughness in drilling MDF panels using response surface methodology. Journal of Composite Materials, 2011. 45(16): p. 1639-1646. [6].Balaji, M., B. Murthy, and N.M. Rao, Multi response optimization of cutting parameters in drilling of AISI 304 stainless steels using response surface methodology. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2018. 232(1): p. 151-161. [7].Abdulwahhab, A.B., M.A. Abdullah, and A.R. Mohammed, Optimization of Drilling Parameter on Surface Roughness using Taguchi Method. International Journal for Scientific Research & Development, 2016. 4(4): p. 786-790. [8].Prakash, S., et al., Experimental Studies on Surface roughness in drilling MDF composite panels using Taguchi and Regression Analysis Method. Journal of Applied Sciences, 2012. 12(10): p. 978-984. [9]. V.N. Gaitonde, S.R. Karnik, B.T. Achyutha, B. Siddeswarappa, “Genetic Algorithm-based Burr Size Minimization in Drilling of AISI 316L Stainless Steel”, Journal of Materials Processing Technology, 197, 2008, 225–236. [10]. J.R. Ballou, S.S. Joshi, R.E. DeVor, S.G. Kapoor, “Burr Formation in Drilling Intersecting Holes with Machinable Austempered Ductile Iron (MADITM) ”, Journal of Manufacturing Processes, 9, 2007, 35–46. [11]. R. Li, P. Hegde, A.J. Shih, “High-throughput drilling of titanium alloys”, International Journal of Machine Tools & Manufacture, 47, 2007, 63–74. [12]. E. Kilickap, “Optimization of Cutting Parameters on Delamination Based on Taguchi Method During Drilling of GFRP Composite”, Expert Systems with Applications, 37, 2010, 6116–6122. [13]. B.Y. Lee, H.S. Liu, Y.S. Tarng, “Modeling and Optimization of Drilling Process”, Journal of Materials Processing Technology, 74, 1998, 149–157. [14]. R.Q. Sardinas, P. Reis, J.P. Davim, “Multi-Objective Optimization of Cutting Parameters for Drilling Laminate Composite Materials by using Genetic Algorithms”, Composites Science and Technology, 66, 2006, 3083–3088. [15]. V.N. Gaitondea, S.R. Karnik, B.T. Achyutha, B. Siddeswarappa, “Taguchi Optimization in Drilling of AISI 316L Stainless Steel to Minimize Burr Size using Multi-Performance Objective Based on Membership Function”, Journal of Materials Processing Technology, 202, 2008, 374–379. [16]. V.N. Gaitondea, S.R. Karnik, J. Paulo Davimc, “Taguchi Multiple Performance Characteristics Optimizationin Drilling of Medium Density Fibreboard (MDF) to Minimize Delamination using Utility Concept”,Journal of Materials Processing Technology, 196, 2008, 73–78. [17]. J.C. Dai(戴金琪), Research for Cu Wafer Packaging Wire Bonding Process Using Response Surface Methodology (以反應曲面方法改善銅導線晶圓封裝之銲線製程問題), Yuan Ze University(元智大學), Master Thesis, 2003. [18]. W.C. Chen, P.H. Tai, M.W. Wang, W.J. Deng and C.T. Chen, “A Neural Network-Based Approach for Dynamic Quality Prediction in a Plastic Injection Molding Process” , Expert Systems, 35, 2008, 843–849. [19]. C. Shen, L. Wang and Q. Li, “Optimization of Injection Molding Process Parameters Using Combination of Artificial Neural Network and Genetic Algorithm Method” , Journal of Materials Processing Technology, 183, 2007, 412–418. [20]. F.B. Jorge, E.M. Hazim and M. Snehasis, “Selecting an Artificial Neural Network for Efficient Modeling and Accurate Simulation of the Milling Process”, International Journal of Machine Tools & Manufacture, 42, 2002, 663–674. [21]. M. Cöl , H.M. Ertunç, M. Yılmaz, “An Artificial Neural Network Model for Toughness Properties in Microalloyed Steel in Consideration of Industrial Production Conditions”, Materials and Design, 28, 2007, 488–495. [22]. P.G. Benardos and G.C. Vosniakos, “Prediction of Surface Roughness in CNC Face Milling Using Neural Networks and Taguchi’s Design of Experiments”, Robotics and Computer Integrated Manufacturing, 18, 2002, 343–354. [23]. B. Ozcelik, T. Erzurumlu, “Comparison of the Warpage Optimization in the Plastic Injection Molding Using ANOVA, Neural Network Model and Genetic Algorithm”, Journal of Materials Processing Technology, 171, 2006, 437–445. [24]. Design-Expert, Stat-Ease, Inc.2021 East Hennepin Ave., Suite 480 Minneapolis, MN 55413. [25]. Minitab Inc. Quality Plaza, 1829 Pine Hall Road, State College, Pennsylvania 16801-3008, USA.
|