資料載入處理中...
跳到主要內容
臺灣博碩士論文加值系統
English
|
Mobile
免費會員
登入
|
註冊
切換版面粉紅色
切換版面綠色
切換版面橘色
切換版面淡藍色
切換版面黃色
切換版面藍色
功能切換導覽列
訪客IP:216.73.216.138
字體大小:
字級大小SCRIPT,如您的瀏覽器不支援,IE6請利用鍵盤按住ALT鍵 + V → X → (G)最大(L)較大(M)中(S)較小(A)小,來選擇適合您的文字大小,如為IE7或Firefoxy瀏覽器則可利用鍵盤 Ctrl + (+)放大 (-)縮小來改變字型大小。
字體大小變更功能,需開啟瀏覽器的JAVASCRIPT功能
:::
詳目顯示
recordfocus
第 1 筆 / 共 1 筆
/1
頁
論文基本資料
摘要
外文摘要
目次
參考文獻
電子全文
QR Code
本論文永久網址
:
複製永久網址
Twitter
研究生:
潘納特
研究生(外文):
PANNATHAT NARMWONG
論文名稱:
泰國車輛登記資料的機器學習分析:趨勢和模式
論文名稱(外文):
Machine Learning Analysis of Vehicle Registration Data in Thailand: Trends and Patterns
指導教授:
胡念祖
指導教授(外文):
HU, NIAN-ZE
口試委員:
胡念祖
、
吳純慧
、
柯志坤
口試委員(外文):
HU, NIAN-ZE
、
WU, CHUN-HUI
、
KE, ZHIKUN
口試日期:
2024-07-11
學位類別:
碩士
校院名稱:
國立虎尾科技大學
系所名稱:
資訊管理系碩士班
學門:
電算機學門
學類:
電算機一般學類
論文種類:
學術論文
論文出版年:
2024
畢業學年度:
112
語文別:
英文
論文頁數:
126
中文關鍵詞:
車輛登記資料
、
機器學習
、
電動車 (EV)
、
泰國汽車市場
外文關鍵詞:
Vehicle Registration Data
、
Machine Learning
、
Electric Vehicles (EVs)
、
Thailand Automotive Market
IG URL:
BRAVE2428
相關次數:
被引用:0
點閱:59
評分:
下載:8
書目收藏:0
本論文利用機器學習和大數據分析研究了 2009 年至 2023 年泰國的車輛登記。透過分析泰國車輛登記資料庫中的車輛登記、人口統計和經濟指標 (GDP),該研究揭示了主要趨勢和相關性。它採用了市場份額分析、空間分析和 2024 年至 2026 年汽車登記預測數據等技術。市場份額分析顯示,豐田、本田和五十鈴佔據主導地位,小型企業和新進業者也呈現出多元化趨勢,尤其是在電動車領域。城市化和經濟活動推動曼谷和其他中心的車輛密度更高。值得注意的是,以比亞迪和特斯拉為首的電動車註冊量正在成長,顯示人們正在轉向永續交通。這些見解為政策制定者、城市規劃者和汽車產業提供了寶貴的啟示,凸顯了進行策略調整以支持永續成長和滿足不斷變化的消費者需求的必要性。本論文加深了對影響泰國汽車市場的因素的理解,為未來交通規劃和政策的研究和決策提供資訊。
This thesis examines vehicle registrations in Thailand from 2009 to 2023 using machine learning and big data analytics. By analyzing vehicle registrations, demographic statistics, and economic indicators (GDP) from the Thailand Vehicle Registration Database, the study reveals key trends and correlations. It employs techniques such as market share analysis, spatial analysis, and forecast data on car registration from 2024 to 2026. The findings indicate a positive relationship between car registrations, population growth, and GDP per capita, while inflation's impact is inconclusive. Market share analysis shows Toyota, Honda, and Isuzu's dominance, with emerging diversity from smaller and new entrants, particularly in electric vehicles. Urbanization and economic activity drive higher vehicle densities in Bangkok and other hubs. Notably, electric vehicle registrations, led by BYD and Tesla, are growing, indicating a shift toward sustainable transport. These insights offer valuable implications for policymakers, urban planners, and the automotive industry, highlighting the need for strategic adaptations to support sustainable growth and meet evolving consumer demands. This thesis enhances understanding of the factors shaping Thailand's automotive market, informing future research and decision-making in transportation planning and policy.
English Abstract............................................................i
Chinese Abstract..........................................................ii
Acknowledgements.......................................................iii
Table of Contents...........................................................iv
List of Tables.................................................................vi
List of Figures...............................................................vii
Chapter 1 Introduction...................................................1
1.1 Research Background and Significance..............2
1.2 Objectives of the Study......................................2
1.3 Scope of Work...................................................3
1.4 Questions of the Study........................................4
Chapter 2 Literature Review.........................................6
2.1 Methodologies in Vehicle Registration Analysis....6
2.2 Key Trends and Gaps in the Literature.................6
2.3 Definition of New Vehicle Registration in Thailand...7
2.4 Overview of Thai Population and Economy..........7
2.5 Overview of Car Accident Cases..........................9
2.6 Overview of Machine Learning and Data Analysis....9
2.7 Related Research..............................................11
Chapter 3 Methodology..................................................15
3.1 Dataset Description............................................15
3.2 Tools and Software............................................29
3.3 Methodological Approach for Case Studies..........29
Chapter 4 Result...........................................................34
4.1 Multiple Regression Analysis of Car Registrations in Thailand....35
4.2 Analysis of Market Share Distribution of Automotive Brands in Thailand from 2009 to 2023.....42
4.3 Top 10 Provinces with Most Car Registrations (2009-2023)....48
4.4 Top 5 Popular Vehicle Brands in Thailand...............53
4.5 Growth of the Electric Vehicle Market Within 5 Years (2019-2023)....59
4.6 Car Ownership Per Household in Each Province.....72
4.7 Statistical Analysis of Vehicle Registrations and Accident Causes in Key Provinces of Thailand (2019-2023)....79
Chapter 5 Conclusions..................................................96
5.1 Multiple Regression Analysis of Car Registrations in Thailand....96
5.2 Market Share Distribution of Automotive Brands in Thailand (2009-2023)....98
5.3 Top 10 Provinces with Most Car Registrations......100
5.4 Top 5 Popular Vehicle Brands in Thailand (2019-2023).....102
5.5 Growth of the Electric Vehicle Market (2019-2023)....102
5.6 Car Ownership Per Household in Each Province.....106
5.7 Statistical Analysis of Vehicle Registrations and Accident Causes in Key Provinces of Thailand (2019-2023)....108
5.8 Forecasting Car Registrations in Thailand Using LSTM Neural Networks....110
5.9 Comprehensive Insights and Future Recommendations....117
5.10 Research Limitations.........................................119
5.11 Future Research Directions.................................120
References.................................................................121
Extended Abstract.....................................................123
On Practical Machine Learning and Data Analysis. TRITA-CSC-A 2008-11. (2008). ISSN 1653-5723. ISRN KTH/CSC/A--08/11--SE. ISBN 978-91-7178-993-3.
Alpaydin, E. (2020). Introduction to Machine Learning. Publisher.
Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer. ISBN 978-0387310732.
McKinney, W. (2022). Python for Data Analysis. Publisher.
Provost, F. & Fawcett, T. (2013). Data Science for Business: What You Need to Know about Data Mining and Data-Analytic Thinking. Publisher.
Dacal-Nieto, A. & Areal, J. J. (2022). “Integrating a Data Analytics System in Automotive Manufacturing”, Journal of Automotive Engineering, 34(2), pp. 123-135.
Van Kampen, J. (2022). “Yearly Development of Car Ownership in Urban and Rural Areas”, Transportation Research Journal, 28(4), pp. 210-225.
Opz, F. & Fred, K. (2024). “Exploring Descriptive Textual Data Analysis Using Machine Learning Techniques”, Journal of Machine Learning Applications, 19(1), pp. 47-59.
Dimitri, G. M. (2023). “A Machine Learning Approach to Analyze and Predict the Electric Cars Scenario: The Italian Case”, International Journal of Sustainable Transportation, 45(3), pp. 300-315.
Oyeshola, J. A., Namadi, M. M., Afolabi, S. & Jimoh, T. O. (2024). “Towards Achieving Energy Security: Data-Driven Analysis of Electric Vehicle Trends (1997-2024)”, Energy Policy Journal, 60(1), pp. 89-105.
Patel, N. (2018). “Analyzing Vehicle Registration Trends in NY Using Hbase Pig Hive and MapReduce”, Journal of Big Data Analytics in Transportation, 10(2), pp. 155-172.
Thai Population.
National Statistical Office of Thailand. (2022). Thailand's Population Data. Retrieved from http://www.nso.go.th
United Nations Department of Economic and Social Affairs. (2021). World Population Prospects. Retrieved from https://population.un.org/wpp/
World Bank. (2022). Thailand's Demographic Data. Retrieved from https://data.worldbank.org/country/thailand
Car Accident Cases.
Department of Land Transport Thailand. (2022). Annual Road Safety Report. Retrieved from http://www.dlt.go.th
Thai Traffic Police Division. (2021). Traffic Accident Statistics. Retrieved from http://www.trafficpolice.go.th
World Health Organization. (2020). Global Status Report on Road Safety. Retrieved from https://www.who.int/violence_injury_prevention/road_safety_status/2020
Thailand's Economy: Focus on GDP per Capita GDP Growth Percentage and Inflation
Bank of Thailand. (2022). Economic and Financial Statistics. Retrieved from https://www.bot.or.th/English/Statistics/Pages/default.aspx
International Monetary Fund. (2022). World Economic Outlook Database. Retrieved from https://www.imf.org/en/Publications/WEO/weo-database/2022
World Bank. (2022). Thailand Economic Monitor. Retrieved from https://www.worldbank.org/en/country/thailand/publication/thailand-economic-monitor
Cars Registration Thailand.
Department of Land Transport Thailand. (2023). Data on the number of cars registered for the first time by brand classified by province. Retrieved from http://www.dlt.go.th
電子全文
推文
當script無法執行時可按︰
推文
網路書籤
當script無法執行時可按︰
網路書籤
推薦
當script無法執行時可按︰
推薦
評分
當script無法執行時可按︰
評分
引用網址
當script無法執行時可按︰
引用網址
轉寄
當script無法執行時可按︰
轉寄
top
相關論文
相關期刊
熱門點閱論文
無相關論文
無相關期刊
1.
整合TinyML技術於機械手臂以實現高效多物件辨識
2.
發展癌症登錄與報告產生系統
3.
基於小波轉換分析之內置式永磁同步馬達線間短路故障診斷
4.
發展智能化視覺辨識分析系統
5.
基於深度學習對越南交通流量檢測與違規行為分析
6.
運用卷積神經演算法分析智能小型電動車的電量狀態
7.
開發往復式壓縮機活塞桿預警模組
8.
機器學習預測模型在失智症診斷之應用
9.
職業駕駛交通事故特性之數據分析-以台北市為例
10.
美國海洋空間規劃之海洋區劃原則:以羅德島州、華盛頓州及康乃狄克州之海洋空間管理計畫為例
11.
運用大數據技術分析文蛤養殖數據
12.
中等教育階段低視力學生使用最佳閱讀文字尺寸之研究
13.
類神經網路於技術指標之評估-以台灣加權指數為例
14.
應用大學入學考試數據於大學申請入學之分析
15.
運用影像辨識與大數據技術發展田徑短距離分析系統
簡易查詢
|
進階查詢
|