英文文獻
Aboukaïs. (2013). Supported manganese oxide on TiO2 for total oxidation of toluene and polycyclic aromatic hydrocarbons (PAHs): characterization and catalytic activity. Materials Chemistry and Physics, 142(2-3), 564-571.
Aeimbhu, A. (2018). Effect of calcination temperature on morphology, wettability and anatase/rutile phase ratio of titanium dioxide nanotube arrays. Materials Today: Proceedings, 5(7), 14950-14954.
Asghar, A.; Raman, A. A. A.; & Daud, W. M. A. W. (2015). Advanced oxidation processes for in-situ production of hydrogen peroxide/hydroxyl radical for textile wastewater treatment: a review. Journal of cleaner production, 87, 826-838.
Astinchap, B.; & Laelabadi, K. G. (2019). Effects of substrate temperature and precursor amount on optical properties and microstructure of CVD deposited amorphous TiO2 thin films. Journal of Physics and Chemistry of Solids, 129, 217-226.
Atout, H.; Álvarez, M. G.; Chebli, D.; Bouguettoucha, A.; Tichit, D.; Llorca, J.; & Medina, F. (2017). Enhanced photocatalytic degradation of methylene blue: Preparation of TiO2/reduced graphene oxide nanocomposites by direct sol-gel and hydrothermal methods. Materials Research Bulletin, 95, 578-587.
Bauer, C.; Jacques, P.; & Kalt, A. (2001). Photooxidation of an azo dye induced by visible light incident on the surface of TiO2. Journal of Photochemistry and Photobiology A: Chemistry, 140(1), 87-92.
Bui, V. K. H.; Nguyen, T. N.; Van Tran, V.; Hur, J.; Kim, I. T.; Park, D.; & Lee, Y.-C. (2021). Photocatalytic materials for indoor air purification systems: An updated mini-review. Environmental Technology & Innovation, 22, 101471.
Cai, W.; Chen, F.; Shen, X.; Chen, L.; & Zhang, J. (2010). Enhanced catalytic degradation of AO7 in the CeO2–H2O2 system with Fe3+ doping. Applied Catalysis B: Environmental, 101(1-2), 160-168.
Cano-Franco, J. C.; & Álvarez-Láinez, M. (2019). Effect of CeO2 content in morphology and optoelectronic properties of TiO2-CeO2 nanoparticles in visible light organic degradation. Materials Science in Semiconductor Processing, 90, 190-197.
Cao, X.; Yang, X.; Li, H.; Huang, W.; & Liu, X. (2017). Investigation of Ce-TiO2 photocatalyst and its application in asphalt-based specimens for NO degradation. Construction and Building Materials, 148, 824-832.
Chen, Q.; Wu, S.; & Xin, Y. (2016). Synthesis of Au–CuS–TiO2 nanobelts photocatalyst for efficient photocatalytic degradation of antibiotic oxytetracycline. Chemical Engineering Journal, 302, 377-387.
Chen, Y.-F.; Lee, C.-Y.; Yeng, M.-Y.; & Chiu, H.-T. (2003). The effect of calcination temperature on the crystallinity of TiO2 nanopowders. Journal of crystal growth, 247(3-4), 363-370.
Choudhury, B.; Borah, B.; & Choudhury, A. (2012). Extending photocatalytic activity of TiO2 nanoparticles to visible region of illumination by doping of cerium. Photochemistry and photobiology, 88(2), 257-264.
Cullity, B.; & Stock, S. (2001). Elements of X-ray diffraction third edition prentice hall upper saddle river. Prince Hall.
Diebold, U. (2003). The surface science of titanium dioxide. Surface science reports, 48(5-8), 53-229.
Gürsoy, M.; & Karaman, M. (2016). Hydrophobic coating of expanded perlite particles by plasma polymerization. Chemical Engineering Journal, 284, 343-350.
Gao, L.; Gan, W.; Xiao, S.; Zhan, X.; & Li, J. (2016). A robust superhydrophobic antibacterial Ag–TiO2 composite film immobilized on wood substrate for photodegradation of phenol under visible-light illumination. Ceramics International, 42(2), 2170-2179.
Gao, Y.; Wang, L.; Zhou, A.; Li, Z.; Chen, J.; Bala, H.; Hu, Q.; & Cao, X. (2015). Hydrothermal synthesis of TiO2/Ti3C2 nanocomposites with enhanced photocatalytic activity. Materials Letters, 150, 62-64.
Gnanasekaran, L.; Rajendran, S.; Priya, A.; Durgalakshmi, D.; Vo, D.-V. N.; Cornejo-Ponce, L.; Gracia, F.; & Soto-Moscoso, M. (2021). Photocatalytic degradation of 2, 4-dichlorophenol using bio-green assisted TiO2–CeO2 nanocomposite system. Environmental Research, 195, 110852.
Hot, J.; Topalov, J.; Ringot, E.; & Bertron, A. (2017). Investigation on parameters affecting the effectiveness of photocatalytic functional coatings to degrade NO:TiO2 amount on surface, illumination, and substrate roughness. International Journal of Photoenergy, 2017.
Hu, Y.; Ren, X.; Qiao, H.; Huang, Z.; Qi, X.; & Zhong, J. (2017). Exploring co-catalytic graphene frameworks for improving photocatalytic activity of Tin disulfide nanoplates. Solar Energy, 157, 905-910.
Huo, Y.; Jin, Y.; Zhu, J.; & Li, H. (2009). Highly active TiO2− x− yNxFy visible photocatalyst prepared under supercritical conditions in NH4F/EtOH fluid. Applied Catalysis B, Environmental, 89(3-4), 543-550.
Jia, L.; Wu, C.; Li, Y.; Han, S.; Li, Z.; Chi, B.; Pu, J.; & Jian, L. (2011). Enhanced visible-light photocatalytic activity of anatase TiO2 through N and S codoping. Applied Physics Letters, 98(21).
Jia, Z.-M.; Zhao, Y.-R.; & Shi, J.-N. (2023). Adsorption kinetics of the photocatalytic reaction of nano-TiO2 cement-based materials: a review. Construction and Building Materials, 370, 130462.
Jiang, B.; Tian, C.; Zhou, W.; Wang, J.; Xie, Y.; Pan, Q.; Ren, Z.; Dong, Y.; Fu, D.; & Han, J. (2011). In situ growth of TiO2 in interlayers of expanded graphite for the fabrication of TiO2–graphene with enhanced photocatalytic activity. Chemistry–A European Journal, 17(30), 8379-8387.
Jiang, D.; Otitoju, T. A.; Ouyang, Y.; Shoparwe, N. F.; Wang, S.; Zhang, A.; & Li, S. (2021). A review on metal ions modified TiO2 for photocatalytic degradation of organic pollutants. Catalysts, 11(9), 1039.
Karakurt, C.; Kurama, H.; & Topcu, I. B. (2010). Utilization of natural zeolite in aerated concrete production. Cement and Concrete Composites, 32(1), 1-8.
Kasinathan, K.; Kennedy, J.; Elayaperumal, M.; Henini, M.; & Malik, M. (2016). Photodegradation of organic pollutants RhB dye using UV simulated sunlight on ceria based TiO2 nanomaterials for antibacterial applications. Scientific reports, 6(1), 38064.
Keerthana, S.; Yuvakkumar, R.; Ravi, G.; Hong, S.; Al-Sehemi, A. G.; & Velauthapillai, D. (2022). Fabrication of Ce doped TiO2 for efficient organic pollutants removal from wastewater. Chemosphere, 293, 133540.
Khairy, M.; & Zakaria, W. (2014). Effect of metal-doping of TiO2 nanoparticles on their photocatalytic activities toward removal of organic dyes. Egyptian Journal of Petroleum, 23(4), 419-426.
Komaraiah, D.; Madhukar, P.; Vijayakumar, Y.; Reddy, M. R.; & Sayanna, R. (2016). Photocatalytic degradation study of methylene blue by brookite TiO2 thin film under visible light irradiation. Materials Today: Proceedings, 3(10), 3770-3778.
Komaraiah, D.; Radha, E.; Reddy, M. R.; Kumar, J. S.; & Sayanna, R. (2019). Structural, Optical Properties and Photocatalytic Activity of Nanocrystalline TiO2 Thin Films Deposited by Sol–Gel Spin Coating. i-Manager's Journal on Material Science, 7(1), 28.
Li, G.; Li, J.; Li, G.; & Jiang, G. (2015). N and Ti 3+ co-doped 3D anatase TiO2 superstructures composed of ultrathin nanosheets with enhanced visible light photocatalytic activity. Journal of Materials Chemistry A, 3(44), 22073-22080.
Linsebigler, A. L.; Lu, G.; & Yates Jr, J. T. (1995). Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chemical reviews, 95(3), 735-758.
Lutic, D.; Petrovschi, D.; Ignat, M.; Creţescu, I.; & Bulai, G. (2018). Mesoporous cerium-doped titania for the photocatalytic removal of persistent dyes. Catalysis Today, 306, 300-309.
Madriz, L.; Tatá, J.; Carvajal, D.; Núñez, O.; Scharifker, B. R.; Mostany, J.; Borrás, C.; Cabrerizo, F. M.; & Vargas, R. (2020). Photocatalysis and photoelectrochemical glucose oxidation on Bi2WO6: Conditions for the concomitant H2 production. Renewable Energy, 152, 974-983.
Magalhães, F.; & Lago, R. (2009). Floating photocatalysts based on TiO2 grafted on expanded polystyrene beads for the solar degradation of dyes. Solar Energy, 83(9), 1521-1526.
Maira, A.; Yeung, K. L.; Lee, C.; Yue, P. L.; & Chan, C. K. (2000). Size effects in gas-phase photo-oxidation of trichloroethylene using nanometer-sized TiO2 catalysts. Journal of catalysis, 192(1), 185-196.
Makdee, A.; Unwiset, P.; Chanapattharapol, K. C.; & Kidkhunthod, P. (2018). Effects of Ce addition on the properties and photocatalytic activity of TiO2, investigated by X-ray absorption spectroscopy. Materials Chemistry and Physics, 213, 431-443.
Maki, L. K.; Maleki, A.; Rezaee, R.; Daraei, H.; & Yetilmezsoy, K. (2019). LED-activated immobilized Fe-Ce-N tri-doped TiO2 nanocatalyst on glass bed for photocatalytic degradation organic dye from aqueous solutions. Environmental Technology & Innovation, 15, 100411.
Maksod, I. H.; Al-Shehri, A.; Bawaked, S.; Mokhtar, M.; & Narasimharao, K. (2017). Structural and photocatalytic properties of precious metals modified TiO2-BEA zeolite composites. Molecular Catalysis, 441, 140-149.
Marcos, C.; & Rodriguez, I. (2015). Vermiculites irradiated with ultraviolet radiation. Applied Clay Science, 109, 127-135.
Mills, A.; Wang, J.; & Ollis, D. F. (2006). Dependence of the kinetics of liquid-phase photocatalyzed reactions on oxygen concentration and light intensity. Journal of catalysis, 243(1), 1-6.
Mohammadi, Z.; Sharifnia, S.; & Shavisi, Y. (2016). Photocatalytic degradation of aqueous ammonia by using TiO2ZnO/LECA hybrid photocatalyst. Materials Chemistry and Physics, 184, 110-117.
Mutuma, B. K.; Shao, G. N.; Kim, W. D.; & Kim, H. T. (2015). Sol–gel synthesis of mesoporous anatase–brookite and anatase–brookite–rutile TiO2 nanoparticles and their photocatalytic properties. Journal of colloid and interface science, 442, 1-7.
Nasir, A. M.; Goh, P. S.; Abdullah, M. S.; Ng, B. C.; & Ismail, A. F. (2019). Adsorptive nanocomposite membranes for heavy metal remediation: recent progresses and challenges. Chemosphere, 232, 96-112.
Nasir, A. M.; Jaafar, J.; Aziz, F.; Yusof, N.; Salleh, W. N. W.; Ismail, A. F.; & Aziz, M. (2020). A review on floating nanocomposite photocatalyst: fabrication and applications for wastewater treatment. Journal of Water Process Engineering, 36, 101300.
Ni, M.; Leung, M. K.; Leung, D. Y.; & Sumathy, K. (2007). A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renewable and Sustainable Energy Reviews, 11(3), 401-425.
Nuasaen, S.; Opaprakasit, P.; & Tangboriboonrat, P. (2014). Hollow latex particles functionalized with chitosan for the removal of formaldehyde from indoor air. Carbohydrate polymers, 101, 179-187.
Nur, A. S.; Sultana, M.; Mondal, A.; Islam, S.; Robel, F. N.; Islam, A.; & Sumi, M. S. A. (2022). A review on the development of elemental and codoped TiO2 photocatalysts for enhanced dye degradation under UV–vis irradiation. Journal of Water Process Engineering, 47, 102728.
Paul, K. K.; Ghosh, R.; & Giri, P. (2016). Mechanism of strong visible light photocatalysis by Ag2O-nanoparticle-decorated monoclinic TiO2 (B) porous nanorods. Nanotechnology, 27(31), 315703.
Rapsomanikis, A.; Apostolopoulou, A.; Stathatos, E.; & Lianos, P. (2014). Cerium-modified TiO2 nanocrystalline films for visible light photocatalytic activity. Journal of Photochemistry and Photobiology A: Chemistry, 280, 46-53.
Reli, M.; Ambrožová, N.; Šihor, M.; Matějová, L.; Čapek, L.; Obalová, L.; Matěj, Z.; Kotarba, A.; & Kočí, K. (2015). Novel cerium doped titania catalysts for photocatalytic decomposition of ammonia. Applied Catalysis B: Environmental, 178, 108-116.
Saad, A. M.; Abukhadra, M. R.; Ahmed, S. A.-K.; Elzanaty, A. M.; Mady, A. H.; Betiha, M. A.; Shim, J.-J.; & Rabie, A. M. (2020). Photocatalytic degradation of malachite green dye using chitosan supported ZnO and Ce–ZnO nano-flowers under visible light. Journal of environmental management, 258, 110043.
Shan, A. Y.; Ghazi, T. I. M.; & Rashid, S. A. (2010). Immobilisation of titanium dioxide onto supporting materials in heterogeneous photocatalysis: A review. Applied Catalysis A: General, 389(1-2), 1-8.
Sharifi, E.; Sadjadi, S. J.; Aliha, M.; & Moniri, A. (2020). Optimization of high-strength self-consolidating concrete mix design using an improved Taguchi optimization method. Construction and Building Materials, 236, 117547.
Shayegan, Z.; Haghighat, F.; & Lee, C.-S. (2020). Surface fluorinated Ce-doped TiO2 nanostructure photocatalyst: A trap and remove strategy to enhance the VOC removal from indoor air environment. Chemical Engineering Journal, 401, 125932.
Spasiano, D.; Marotta, R.; Malato, S.; Fernandez-Ibanez, P.; & Di Somma, I. (2015). Solar photocatalysis: Materials, reactors, some commercial, and pre-industrialized applications. A comprehensive approach. Applied Catalysis B: Environmental, 170, 90-123.
Tong, T.; Zhang, J.; Tian, B.; Chen, F.; He, D.; & Anpo, M. (2007). Preparation of Ce–TiO2 catalysts by controlled hydrolysis of titanium alkoxide based on esterification reaction and study on its photocatalytic activity. Journal of colloid and interface science, 315(1), 382-388.
Wang, X.; Wang, X.; Zhao, J.; Song, J.; Wang, J.; Ma, R.; & Ma, J. (2017). Solar light-driven photocatalytic destruction of cyanobacteria by F-Ce-TiO2/expanded perlite floating composites. Chemical Engineering Journal, 320, 253-263.
Xing, Z.; Zhang, J.; Cui, J.; Yin, J.; Zhao, T.; Kuang, J.; Xiu, Z.; Wan, N.; & Zhou, W. (2018). Recent advances in floating TiO2-based photocatalysts for environmental application. Applied Catalysis B: Environmental, 225, 452-467.
Yahya, N.; Aziz, F.; Jamaludin, N.; Mutalib, M.; Ismail, A.; Salleh, W.; Jaafar, J.; Yusof, N.; & Ludin, N. (2018). A review of integrated photocatalyst adsorbents for wastewater treatment. Journal of environmental chemical engineering, 6(6), 7411-7425.
Zhang, L.; Xing, Z.; Zhang, H.; Li, Z.; Zhang, X.; Zhang, Y.; Li, L.; & Zhou, W. (2015). Multifunctional floating titania‐coated macro/mesoporous photocatalyst for efficient contaminant removal. ChemPlusChem, 80(3), 623-629.
Zhang, Y.; Bao, H.; Miao, F.; Shen, Y.; He, Y.; Gu, W.; Meng, Q.; Wang, W.; & Zhang, J. (2013). Characterization of a monoclonal antibody to Spiroplasma eriocheiris and identification of a motif expressed by the pathogen. Veterinary microbiology, 161(3-4), 353-358.
Zheng, F.; Dong, F.; Zhou, L.; Yu, J.; Luo, X.; Zhang, X.; Lv, Z.; Jiang, L.; Chen, Y.; & Liu, M. (2023). Cerium and carbon-sulfur codoped mesoporous TiO2 nanocomposites for boosting visible light photocatalytic activity. Journal of Rare Earths, 41(4), 539-549.
Zong, E.; Wang, C.; Yang, J.; Zhu, H.; Jiang, S.; Liu, X.; & Song, P. (2021). Preparation of TiO2/cellulose nanocomposites as antibacterial bio-adsorbents for effective phosphate removal from aqueous medium. International Journal of Biological Macromolecules, 182, 434-444.
中文文獻
李輝煌,2013。田口方法品質設計的原理與實務,第四版,新北市:高立圖書有限公司。
工研院IEK化材組,2006。特用化學品工業年鑑,工研院產業經濟與資訊服務中心。
黃國軒,2006。利用TiO2結合奈米碳管降解偶氮系染料之研究,國立雲林科技大學,環境與安全衛生工程系,碩士論文。盧明俊,1993。毒性化學物質經二氧化鈦催化之光氧化反應,國立交通大學土木工程學系,碩士論文。鍾朝全,2001。以UV/TiO2程序進行甲基橙溶液脫色反應之研究,第二十六屆廢水處理技術研討會論文集,頁1-105。
侯冠任,2019。摻鈰二氧化鈦光催化及降解剛果紅之效能研究,國立雲林科技大學,碩士論文。