|
1.Mdlovu, N. V.; Chiang, C. L.; Lin, K. S.; Jeng, R. C., Recycling copper nanoparticles from printed circuit board waste etchants via a microemulsion process. J. Clean Prod. 2018, 185, 781-796. 2.Hussain, N.; Gogoi, P.; Azhagan, M. V. K.; Shelke, M. V.; Das, M. R., Green synthesis of stable Cu(0) nanoparticles onto reduced graphene oxide nanosheets: a reusable catalyst for the synthesis of symmetrical biaryls from arylboronic acids under base-free conditions (vol 5, pg 1251, 2015). Catal. Sci. Technol. 2016, 6 (4), 1234-1234. 3.Ullah, H.; Wilfred, C. D.; Shaharun, M. S., Green synthesis of copper nanoparticle using ionic liquid-based extraction from Polygonum minus and their applications. Environ. Technol. 2019, 40 (28), 3705-3712. 4.Ouyang, B.; Zhang, Y.; Xia, X.; Rawat, R. S.; Fan, H. J., A brief review on plasma for synthesis and processing of electrode materials. Materials Today Nano 2018, 3, 28-47. 5.邱國斌; 蔡定平, 金屬表面電漿簡介. In 物理雙月刊, 2006; Vol. 28, pp 472-485. 6.Jana, J.; Ganguly, M.; Pal, T., Enlightening surface plasmon resonance effect of metal nanoparticles for practical spectroscopic application. RSC Advances 2016, 6 (89), 86174-86211. 7.Lisiecki, I.; Billoudet, F.; Pileni, M. P., Control of the Shape and the Size of Copper Metallic Particles. The Journal of Physical Chemistry 1996, 100 (10), 4160-4166. 8.Lisiecki, I.; Pileni, M. P., Synthesis of copper metallic clusters using reverse micelles as microreactors. Journal of the American Chemical Society 1993, 115 (10), 3887-3896. 9.Yanase, A.; Komiyama, H., In situ observation of oxidation and reduction of small supported copper particles using optical absorption and X-ray diffraction. Surface Science 1991, 248 (1), 11-19. 10.Ho, K.-S.; Tseng, P.-H.; Wang, Y.-Z.; Hsieh, T.-H.; Tsai, C.-H.; Chen, K.-T., Preparation of sub 3 nm copper nanoparticles by microwave irradiation in the presence of triethylene tetramin. Nanotechnology 2018, 29, 085603. 11.Kawasaki, H.; Kosaka, Y.; Myoujin, Y.; Narushima, T.; Yonezawa, T.; Arakawa, R., Microwave-assisted polyol synthesis of copper nanocrystals without using additional protective agents. Chem. Commun. 2011, 47 (27), 7740-7742. 12.Jain, P. K.; El-Sayed, M. A., Noble Metal Nanoparticle Pairs: Effect of Medium for Enhanced Nanosensing. Nano Letters 2008, 8 (12), 4347-4352. 13.Somlyai-Sipos, L.; Janovszky, D.; Sycheva, A.; Baumli, P., Investigation of the Melting Point Depression of Copper Nanoparticles. IOP Conference Series: Materials Science and Engineering 2020, 903, 012002. 14.Kim, D.; Moon, J., Highly Conductive Ink Jet Printed Films of Nanosilver Particles for Printable Electronics. Electrochemical and Solid State Letters 2005, 8. 15.Ho, K.-S.; Jheng, L.-C.; Wang, Y.-Z.; Huang, W.-Y.; Tsai, C.-H.; Huang, C.-T.; Tsai, H.-S., Melting and Recrystallization of Copper Nanoparticles Prepared by Microwave-Assisted Reduction in the Presence of Triethylenetetramine. Materials 2020, 13 (7), 1507. 16.Zhao, S.; Wang, S.; Ye, H., Size-Dependent Melting Properties of Free Silver Nanoclusters. Journal of The Physical Society of Japan 2001, 70, 2953-2957. 17.Gawande, M. B.; Goswami, A.; Felpin, F. X.; Asefa, T.; Huang, X. X.; Silva, R.; Zou, X. X.; Zboril, R.; Varma, R. S., Cu and Cu-Based Nanoparticles: Synthesis and Applications in Review Catalysis. Chem. Rev. 2016, 116 (6), 3722-3811. 18.Menéndez-Manjón, A.; Wagener, P.; Barcikowski, S., Transfer-Matrix Method for Efficient Ablation by Pulsed Laser Ablation and Nanoparticle Generation in Liquids. The Journal of Physical Chemistry C 2011, 115 (12), 5108-5114. 19.Yang, L.; Seah, M. P.; Anstis, E. H.; Gilmore, I. S.; Lee, J. L. S., Sputtering Yields of Gold Nanoparticles by C60 Ions. The Journal of Physical Chemistry C 2012, 116 (16), 9311-9318. 20.Kim, J.; Kang, S. W.; Mun, S. H.; Kang, Y. S., Facile Synthesis of Copper Nanoparticles by Ionic Liquids and Its Application to Facilitated Olefin Transport Membranes. Industrial & Engineering Chemistry Research 2009, 48 (15), 7437-7441. 21.Mangadlao, J. D.; Cao, P.; Choi, D.; Advincula, R. C., Photoreduction of Graphene Oxide and Photochemical Synthesis of Graphene–Metal Nanoparticle Hybrids by Ketyl Radicals. ACS Applied Materials & Interfaces 2017, 9 (29), 24887-24898. 22.Khan, A.; Rashid, A.; Younas, R.; Chong, R., A chemical reduction approach to the synthesis of copper nanoparticles. International Nano Letters 2016, 6 (1), 21-26. 23.Guzman, M.; Arcos, M.; Dille, J.; Godet, S.; Rousse, C., Effect of the Concentration of NaBH 4 and N 2 H 4 as Reductant Agent on the Synthesis of Copper Oxide Nanoparticles and its Potential Antimicrobial Applications Citation. Nano Biomedicine and Engineering 2018, 10, 392-405. 24.Umer, A.; Naveed, S.; Ramzan, N.; Rafique, M. S.; Imran, M., A green method for the synthesis of Copper Nanoparticles using L-ascorbic acid. Materia-Rio De Janeiro 2014, 19 (3), 197-203. 25.Qi, L.; Ma, J.; Shen, J., Synthesis of Copper Nanoparticles in Nonionic Water-in-Oil Microemulsions. J. Colloid Interface Sci. 1997, 186 (2), 498-500. 26.Wang, W.; Song, Y.; Liu, Q.; Yang, K., Facile synthesis and catalytic properties of silver colloidal nanoparticles stabilized by SDBS. Bulletin of Materials Science 2014, 37 (4), 797-803. 27.Park, B. K.; Jeong, S.; Kim, D.; Moon, J.; Lim, S.; Kim, J. S., Synthesis and size control of monodisperse copper nanoparticles by polyol method. J. Colloid Interface Sci. 2007, 311 (2), 417-424. 28.Jain, S.; Jain, A.; Kachhawah, P.; Devra, V., Synthesis and size control of copper nanoparticles and their catalytic application. Transactions of Nonferrous Metals Society of China 2015, 25 (12), 3995-4000. 29.Wang, Y. H.; Chen, P. L.; Liu, M. H., Synthesis of well-defined copper nanocubes by a one-pot solution process. Nanotechnology 2006, 17 (24), 6000-6006. 30.Kuroda, K.; Keller, P.; Kawasaki, H., Mild synthesis of single-nanosized plasmonic copper nanoparticles and their catalytic reduction of methylene blue. Colloid Interface Sci. Commun. 2019, 31, 6. 31.Qingming, L.; Zhou, D.-b.; Yamamoto, Y.; Ichino, R.; Okido, M., Preparation of Cu nanoparticles with NaBH4 by aqueous reduction method. Transactions of Nonferrous Metals Society of China 2012, 22, 117–123. 32.Ahoba-Sam, C.; Boodhoo, K. V. K.; Olsbye, U.; Jens, K. J., Tailoring Cu Nanoparticle Catalyst for Methanol Synthesis Using the Spinning Disk Reactor. Materials 2018, 11 (1). 33.Chen, H.; Lee, J.-H.; Kim, Y.-H.; Shin, D.-W.; Park, S.-C.; Xianhui, M.; Yoo, J. W., Metallic Copper Nanostructures Synthesized by a Facile Hydrothermal Method. Journal of nanoscience and nanotechnology 2010, 10, 629-36. 34.Huang, C.-C.; Lo, S.-L.; Lien, H.-L., Zero-valent copper nanoparticles for effective dechlorination of dichloromethane using sodium borohydride as a reductant. Chemical Engineering Journal 2012, 203, 95-100. 35.Xu, L.; Peng, J.; Srinivasakannan, C.; Zhang, L.; Zhang, D.; Liu, C.; Wang, S.; Shen, A. Q., Synthesis of copper nanoparticles by a T-shaped microfluidic device. RSC Advances 2014, 4 (48), 25155-25159. 36.Aguilar, M. S.; Esparza, R.; Rosas, G., Synthesis of Cu nanoparticles by chemical reduction method. Transactions of Nonferrous Metals Society of China 2019, 29 (7), 1510-1515. 37.Woo, K.; Kim, D.; Kim, J. S.; Lim, S.; Moon, J., Ink-Jet Printing of Cu−Ag-Based Highly Conductive Tracks on a Transparent Substrate. Langmuir 2009, 25 (1), 429-433. 38.Lee, C.-J.; Kim, J.-H.; Hwang, B.-U.; Min, K. D.; Jung, S.-B., Effect of SDBS on the oxidation reliability of screen-printed Cu circuits. Journal of Materials Science: Materials in Electronics 2020, 31. 39.Begletsova, N.; Selifonova, E.; Chumakov, A.; Al-Alwani, A.; Zakharevich, A.; Chernova, R.; Glukhovskoy, E., Chemical synthesis of copper nanoparticles in aqueous solutions in the presence of anionic surfactant sodium dodecyl sulfate. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2018, 552, 75-80. 40.Brege, J. J.; Hamilton, C. E.; Crouse, C. A.; Barron, A. R., Ultrasmall Copper Nanoparticles from a Hydrophobically Immobilized Surfactant Template. Nano Letters 2009, 9 (6), 2239-2242. 41.Wang, W.; Song, Y.; Liu, Q.; Yang, K., Facile synthesis and catalytic properties of silver colloidal nanoparticles stabilized by SDBS. Bulletin of Materials Science 2014, 37, 797-803. 42.Cheng, X.; Zhang, X.; Yin, H.; Wang, A.; Xu, Y., Modifier effects on chemical reduction synthesis of nanostructured copper. Applied Surface Science 2006, 253 (5), 2727-2732. 43.Liu, K.; Song, Y.; Chen, S., Electrocatalytic activities of alkyne-functionalized copper nanoparticles in oxygen reduction in alkaline media. Journal of Power Sources 2014, 268, 469-475. 44.Vázquez-Vázquez, C.; Bañobre-López, M.; Mitra, A.; López-Quintela, M. A.; Rivas, J., Synthesis of Small Atomic Copper Clusters in Microemulsions. Langmuir 2009, 25 (14), 8208-8216. 45.Lisiecki, I., Size control of spherical metallic nanocrystals. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2004, 250, 499-507. 46.Qiu, S.; Dong, J.; Chen, G., Preparation of Cu Nanoparticles from Water-in-Oil Microemulsions. J. Colloid Interface Sci. 1999, 216 (2), 230-234. 47.Rufus, S. N. A.; Philip, D., Microwave-assisted rapid synthesis of copper nanoparticles with exceptional stability and their multifaceted applications. J. Mol. Liq. 2016, 221, 1008-1021. 48.Nikkam, N.; Ghanbarpour, M.; Saleemi, M.; Haghighi, E. B.; Khodabandeh, R.; Muhammed, M.; Palm, B.; Toprak, M. S., Experimental investigation on thermo-physical properties of copper/diethylene glycol nanofluids fabricated via microwave-assisted route. Applied Thermal Engineering 2014, 65 (1), 158-165. 49.Ganguli, A. K.; Ganguly, A.; Vaidya, S., Microemulsion-based synthesis of nanocrystalline materials. Chemical Society Reviews 2010, 39 (2), 474-485. 50.Li, W.; Xu, P.; Zhou, H.; Yang, L.; Liu, H., Advanced functional nanomaterials with microemulsion phase. Science China Technological Sciences 2012, 55 (2), 387-416. 51.Ganguli, D.; Ganguli, M., Inorganic Particle Synthesis via Macro and Microemulsions. 2003. 52.Chen, D.-H.; Wu, S.-H., Synthesis of Nickel Nanoparticles in Water-in-Oil Microemulsions. Chemistry of Materials 2000, 12 (5), 1354-1360. 53.Kitchens, C. L.; McLeod, M. C.; Roberts, C. B., Chloride Ion Effects on Synthesis and Directed Assembly of Copper Nanoparticles in Liquid and Compressed Alkane Microemulsions. Langmuir 2005, 21 (11), 5166-5173. 54.Cason, J. P.; Miller, M. E.; Thompson, J. B.; Roberts, C. B., Solvent Effects on Copper Nanoparticle Growth Behavior in AOT Reverse Micelle Systems. The Journal of Physical Chemistry B 2001, 105 (12), 2297-2302. 55.Cao, Y.; Guo, J.; Shi, R.; Waterhouse, G. I. N.; Pan, J.; Du, Z.; Yao, Q.; Wu, L.-Z.; Tung, C.-H.; Xie, J.; Zhang, T., Evolution of thiolate-stabilized Ag nanoclusters from Ag-thiolate cluster intermediates. Nature Communications 2018, 9 (1), 2379. 56.Winsor, P. A., Hydrotropy, solubilisation and related emulsification processes. Transactions of the Faraday Society 1948, 44 (0), 376-398. 57.Wang, X.-j.; Li, X.; Yang, S., Influence of pH and SDBS on the Stability and Thermal Conductivity of Nanofluids. Energy & Fuels 2009, 23 (5), 2684-2689. 58.Lemon, B. I.; Crooks, R. M., Preparation and Characterization of Dendrimer-Encapsulated CdS Semiconductor Quantum Dots. Journal of the American Chemical Society 2000, 122 (51), 12886-12887.
|